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Dynamic economic theories usually have implications on and only on the condi-
tional mean dynamics of economic processes+ Using a generalized spectral deriv-
ative approach, Hong and Lee ~2005, Review of Economic Studies 72, 499–541!
recently proposed a new class of omnibus nonparametric specification tests for
linear and nonlinear time series conditional mean models, where the dimension
of the conditioning information set may be infinite+ The tests can detect a wide
range of model misspecifications in mean while being robust to conditional het-
eroskedasticity and time-varying higher order moments of unknown form+ They
enjoy an asymptotic “nuisance parameter–free” property in the sense that param-
eter estimation uncertainty has no impact on the asymptotic N~0,1! distribution
of the test statistics+ As a result, only the estimated residuals from the null para-
metric model are needed to implement the tests, and no specific estimation is
required+

Although parameter estimation uncertainty has no impact on the asymptotic
distribution of the tests, it may have significant impact on the finite-sample dis-
tribution, and such an impact may become more substantial as the number of esti-
mated parameters increases+ In this paper, we adopt the Wooldridge ~1990,
Econometric Theory 6, 17– 43! device for parametric m-tests to the Hong and Lee
~2005! nonparametric tests to reduce the impact of parameter estimation uncer-
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tainty+ Asymptotic size and power properties of the modified tests are investi-
gated, and simulation studies show that the modified tests generally have better
sizes in finite samples and are robust to parameter estimation uncertainty+ In the
meantime, the size improvement does not cause loss of power against a wide range
of alternatives when using the empirical critical values for the tests+ These results
suggest that the modified generalized spectral derivative tests can be a useful tool
in time series conditional mean modeling+

1. INTRODUCTION

Most dynamic economic theories, such as the efficient market hypothesis, the
expectations hypothesis, consumption and tax smoothing, dynamic asset pric-
ing, and more generally rational expectations, have implications on and only
on the conditional mean dynamics of underlying economic variables ~e+g+,
Cochrane, 2001; Sargent and Ljungqvist, 2002; Adda and Cooper, 2003!+ For
example, dynamic asset pricing implies that the expectation of the pricing
error given the information available to economic agents is zero for all assets+
Although economic theory may suggest a nonlinear relationship for the condi-
tional mean dynamics, it does not give a concrete functional form+ Various mod-
els used in practice can be, at best, viewed as approximations to the underlying
conditional mean dynamics+ It is important to check conditional mean specifi-
cation, because misspecification in mean can lead to misleading conclusions
and suboptimal point forecasts+ Indeed, specification testing for dynamic con-
ditional mean models has become an integral part of the modern time series
econometric model building practice ~e+g+, White, 1987; Wooldridge, 1990a,
1990b, 1991!+

Hong and Lee ~2005! recently proposed a class of generally applicable omni-
bus nonparametric tests for possibly nonlinear time series conditional mean mod-
els, without requiring any prior knowledge of possible alternatives+ They used
a suitable partial derivative of the generalized spectrum that focuses on the con-
ditional mean dynamics+ The generalized spectrum was first proposed in Hong
~1999! as a new frequency domain analytic tool for nonlinear time series+ It
can capture both linear and nonlinear serial dependence and enjoys the nice
features of spectral analysis+ In particular, it incorporates information on serial
dependence at all lags and can characterize cyclical dynamics caused by linear
or nonlinear serial dependence+ As a result, the Hong and Lee ~2005! tests can
detect a wide variety of conditional mean misspecifications in both functional
form and lag structure+ This differs from existing tests for time series condi-
tional mean models, which assume a fixed lag order and focus on functional
form specification+ One important feature of time series modeling is that the
conditioning information set usually contains an infinite number of lags ~i+e+,
the entire past history!, unless a Markovian assumption holds+ Hong and Lee
~2005! checked a large number of lags without suffering from the “curse of
dimensionality+” Because they compared a nonparametric generalized spectral
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derivative estimator with a restricted counterpart implied by correct condi-
tional mean specification, their tests can be viewed as a generalization of the
Hausman ~1978! methodology from a parametric context to a nonparametric
time series context+ Unlike Hausman ~1978!, however, Hong and Lee ~2005!
did not require that parameter estimators be asymptotically efficient under the
null hypothesis+

Dynamic economic theory, although having implications on the conditional
mean dynamics of an underlying economic process, is usually silent about its
higher order conditional moment dynamics+ There is a growing consensus among
economists that the volatilities of most economic and financial time series are
time-varying ~e+g+, Wooldridge, 1990a; Granger and Teräsvirta, 1993!+ Volatil-
ity clustering is a rule rather than an exception for most economic and financial
time series+ Moreover, recent studies ~e+g+, Gallant, Hsieh, and Tauchen, 1991;
Hansen, 1994; Harvey and Siddique, 1999, 2000; Jondeau and Rockinger, 2003!
documented time-varying conditional skewness and kurtosis of economic and
financial time series+ Time-varying higher order moments may be caused by
~e+g+! correlated jumps or large sudden changes that occur occasionally+ It is
important to develop tests of the conditional mean models that are robust not
only to conditional heteroskedasticity but also to time-varying higher order
moments+ Failure to accommodate these features will lead to distorted sizes
~i+e+, Type I errors! for the tests+ The Hong and Lee ~2005! tests are robust to
conditional heteroskedasticity and all higher order conditional moments of
unknown form+ Thus, any conditional mean model can be subjected to testing
without reestimating the model+

Hong and Lee ~2005! only required estimation of the null conditional mean
model, and parameter estimation uncertainty has no impact on the asymptotic
distribution of their tests+ Intuitively, parameter estimation uncertainty has an
impact on the finite-sample distribution of the tests, and the degree of the impact
depends on the number of estimated parameters associated with endogenous
variables+ For a parametric model, the number of estimated parameters is finite
and fixed as the sample size T r `+ As a result, the impact is at most an
adjustment of a finite number of degrees of freedom+When the number of lags
employed in the generalized spectral derivative tests is large ~i+e+, grows to infin-
ity with T !, the adjustment of a finite number of degrees of freedom becomes
asymptotically negligible+

The asymptotic “nuisance parameter–free” property simplifies the implemen-
tation of the tests+ Only the estimated model residuals are needed to imple-
ment the tests, and no specific estimation method is required+ However, the
sample sizes of most low-frequency economic and financial time series data
are not large, whereas econometric time series models may contain a rela-
tively large number of estimated parameters+ Thus, the impact of parameter
estimation uncertainty may not be trivial in small and finite samples+ Indeed,
our simulation studies show that the empirical sizes of the Hong and Lee ~2005!
tests deteriorate as the number of estimated autoregressive parameters increases+
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In particular, they tend to underreject, apparently because parameter estima-
tion tends to make the estimated residuals look more like a martingale dif-
ference sequence ~m+d+s+!+ This can be troublesome in practice, because
underrejection makes it more difficult to detect neglected dynamic structure in
mean in finite samples+

To deal with the underrejection problem, one could use a bootstrap proce-
dure, which can take into account the impact of parameter estimation uncer-
tainty+ In the present context, naive bootstraps cannot be used, because under
correct specification of the conditional mean model, the regression error is
an m+d+s+, which is not necessarily an independent and identically distributed
~i+i+d+! sequence+ For a non-i+i+d+ sequence, the bootstrap can be complicated,
because higher order serial dependence has to be preserved ~Horowitz, 2003;
Gonçalves and Kilian, 2004!+ In this paper, we propose a substantive mod-
ification to the Hong and Lee ~2005! tests that can reduce the impact of
parameter estimation uncertainty+ This is achieved by using the Wooldridge
~1990a! device, which is a convenient auxiliary regression that can effectively
remove the impact of parameter estimation uncertainty of a parametric test
statistic up to a higher order+ By running an increasing sequence of auxiliary
regressions, we can reduce the impact of parameter estimation uncertainty of
the generalized spectral derivative tests+ As a consequence, the finite-sample
distribution of the tests is expected to be more robust to the number of esti-
mated parameters+

As White ~1994! pointed out, the Wooldridge ~1990a! device generally ren-
ders a test unable to detect certain misspecification+ This is also the case for
our modified generalized spectral derivative tests+ However, when the least
squares estimator ~or a Gaussian quasi–maximum likelihood estimator! is used,
the modified generalized spectral derivative tests share the same consistency
~i+e+, asymptotic power one! property as the unmodified generalized spectral
derivative tests, although the modified and unmodified test statistics, after being
properly scaled, do not converge to the same probability limit under a fixed
alternative+ In this case, there is no asymptotic power loss for our modified
tests, but their sizes have been significantly improved+ This is confirmed in our
simulation studies+

Section 2 introduces hypotheses of interest and modified generalized spec-
tral derivative tests and also provides heuristics on how the Wooldridge ~1990a!
device can improve the asymptotic normal approximation of the generalized
spectral derivative tests+ Section 3 derives the asymptotic distribution of the
modified tests, and Section 4 investigates their asymptotic power property under
a general fixed alternative+ In Section 5, we compare the finite-sample perfor-
mances of the modified and unmodified generalized spectral derivative tests+
Section 6 concludes+ All proofs are collected in the Appendix+ The GAUSS
code for implementing our modified tests is available from the authors upon
request+ Throughout, we use C to denote a generic bounded constant, 7{7 the
Euclidean norm, and A* the complex conjugate of A+
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2. GENERALIZED SPECTRAL DERIVATIVE TESTS

2.1. Hypotheses of Interest

Suppose g~It�1,u! is a parametric model for the conditional mean E~Yt 6It�1! of
a stochastic time series process $Yt %, where It�1 is an information set at time
t � 1, which may contain lagged dependent variables $Yt�j , j � 0% and current
and lagged exogenous variables $Zt�j , j � 0% , and u � Q is a finite-dimensional
parameter+ Examples of g~It�1,u! include linear time series regression ~static
or dynamic! models, autoregressive moving average ~ARMA! models, ARMA
with exogenous variables ~ARMAX! models, regime-switching autoregressive
models ~Hamilton, 1989!, parametric state-space models ~Priestley, 1988!,
smooth transition autoregressive models ~Teräsvirta, 1994!, Poisson jump auto-
regressive models, and threshold autoregressive models with known thresholds
~e+g+, Potter, 1995!+1

We say that the model g~It�1,u! is correctly specified for E~Yt 6It�1! if

H0 : Pr @g~It�1,u0 ! � E~Yt 6It�1!#� 1 for some u0 � Q+

Alternatively, the model g~It�1,u! is misspecified for E~Yt 6It�1! if

HA : Pr @g~It�1,u! � E~Yt 6It�1!# � 1 for all u � Q+

Conditional mean modeling has been a primary interest in time series analy-
sis, because E~Yt 6It�1! is the optimal predictor for Yt using It�1 in terms of the
mean squared error criterion+ In addition, most dynamic economic theories have
implications on and only on the conditional mean dynamics of economic pro-
cesses, as pointed out earlier+

2.2. Generalized Spectral Derivative Tests

In time series modeling, It�1 is possibly infinite-dimensional ~i+e+, dating back
to the infinite past!, as is the case for non-Markovian processes+ This poses a
challenge in testing the adequacy of the model g~It�1,u!, due to the curse of
dimensionality+ Hong and Lee ~2005! proposed a nonparametric test of H0 using
a suitable partial derivative of the Hong ~1999! generalized spectrum, which
avoids the curse of dimensionality+ Define the model error

«t ~u! [ Yt � g~It�1,u!, u � Q+ (2.1)

Then H0 holds if and only if E @«t~u0!6It�1#� 0 a.s. for some u0 � Q+ The null
hypothesis H0 thus implies E @«t ~u0 !6It�1

« # � 0 a+s+ , where It�1
« [ $«t�1~u0!,

«t�2~u0!, + + +%+ This forms a basis for testing H0+
For notational economy, we put «t [ «t~u0!, where u0 � p lim Zu and Zu is a

parameter estimator+ Suppose $«t % is a strictly stationary process with marginal
characteristic function w~u! [ E~e iu«t ! and pairwise joint characteristic func-
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tion wj~u, v! [ E~e iu«t�iv«t�6 j 6 !, where i [ M�1, u, v � R, and j � 0,61, + + + +
The basic idea of the generalized spectrum in Hong ~1999! is to consider the
spectrum of the transformed series $e iu«t % + It is defined as

f ~v,u, v! [
1

2p (j��`

`

sj ~u, v!e�ijv, v � @�p,p# ,u, v � R, (2.2)

where v is the frequency and sj~u, v! [ cov~e iu«t, e iv«t�6 j 6 ! is the covariance
function of the transformed series+ The function f ~v,u, v! can capture any type
of pairwise serial dependence in $«t %, i+e+, dependence between «t and «t�j for
any j � 0, including nonlinear serial dependence with zero autocorrelation+ This
is analogous to the higher order spectra ~Brillinger, 1965; Brillinger and Rosen-
blatt, 1967a, 1967b!+ Unlike the higher order spectra, however, f ~v,u, v! does
not require the existence of any moment of $«t % + Nevertheless, when E~«t

2!
exists, we can obtain the power spectrum as a partial derivative of f ~v,u, v! at
~u, v! � ~0,0!:

]2

]u]v
f ~v,u, v!6~u, v!�~0,0! � �

1

2p (j��`

`

cov~«t ,«t�6 j 6 !e
�ijv, v � @�p,p# +

For this reason, we call f ~v,u, v! the generalized spectrum of $«t %+
As is well known, the interpretation of spectral analysis is more difficult for

nonlinear time series than for linear time series+ For example, the bispectrum
~e+g+, Subba Rao and Gabr, 1984! has no physical ~i+e+, energy decomposition
over frequencies! interpretation, unlike the power spectrum+ This is also true of
f ~v,u, v!+ However, the basic idea of characterizing cyclical dynamics still
applies: f ~v,u, v! is useful when searching for linear or nonlinear cyclical move-
ments+ A strong cyclicity of data can be linked with a strong serial dependence
in $«t % that may not be captured by the autocorrelation function+ The general-
ized spectrum f ~v,u, v! can capture such nonlinear cyclical patterns by display-
ing distinct spectral peaks+ This can be seen from the Taylor series expansion
of f ~v,{,{! around the origin ~0,0!:

f ~v,u, v! � (
m�0

`

(
l�0

` ~iu!m~iv!l

m! l!
� 1

2p (j��`

`

cov~«t
m ,«t�6 j 6

l !e�ijv� ,
v � @�p,p# ,u, v � R,

assuming all moments of $«t % exist+ Now suppose an asset series is a white
noise ~cov~«t ,«t�j ! � 0 for all j � 0! but has a stochastic cyclical dynamics in
volatility clustering, which may be linked to business cycles ~e+g+, Schwert,
1989; Hamilton and Lin, 1996!+ Then the power spectrum will miss these
volatility cycles, but f ~v,u, v! can effectively capture them+ More generally,
f ~v,u, v! can capture cyclical dynamics in the conditional distribution of $«t % ,
including those in volatility, skewness, and kurtosis+2
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The generalized spectrum f ~v,u, v! itself is not suitable for testing H0, because
it can capture serial dependence not only in mean but also in higher order
moments+3 An example is an autoregressive conditionally heteroskedastic
~ARCH! process, which is an m+d+s+ but can be captured by f ~v,u, v!+ How-
ever, just as the characteristic function can be differentiated to generate various
moments of $«t % , f ~v,u, v! can be differentiated to capture serial dependence in
various moments+ To focus on and only on serial dependence in mean, one can
use the partial derivative

f ~0,1,0! ~v,0, v! [
1

2p (j��`

`

sj
~1,0!~0, v!e�ijv, v � @�p,p# , v � R, (2.3)

where

sj
~1,0!~0, v! [

]

]u
sj ~u, v!6u�0 � cov~i«t , e iv«t�6 j 6 !+

The measure sj
~1,0!~0, v! checks whether the autoregression function E~«t 6«t�j !

at lag j is zero+ Under appropriate regularity conditions, sj
~1,0!~0, v! � 0 for all

v � R if and only if E~«t 6«t�j !� 0 a+s+4 Therefore, sj
~1,0!~0, v!, or equivalently

f ~0,1,0!~v,0, v!, ideally suits for testing conditional mean dynamics+ The auto-
regression function can capture linear and nonlinear serial dependence in mean,
including processes with zero autocorrelation+ Examples are a bilinear auto-
regressive process «t � azt�1«t�2 � zt and a nonlinear moving-average process
«t � azt�1 zt�2 � zt , where $zt % ; i+i+d+~0,s 2!+5

Although E~«t 6«t�j ! and sj
~1,0!~0, v! are equivalent measures, the use

of sj
~1,0!~0, v! avoids smoothed nonparametric estimation+ Moreover,

supv�R 6sj
~1,0!~0, v!6 can be viewed as an operational measure of the maximum

mean correlation, maxf ~{!6corr @«t , f ~«t�j!#6, which was proposed by Granger and
Teräsvirta ~1993, p+ 23! as a measure for nonlinearity in mean+ Similarly, the
generalized spectral derivative modulus

m~v! [ sup
v�~�`,`!

6 f ~0,1,0! ~v,0, v!6

can be viewed as the maximum dependence in mean at frequency v+ It can be
used to search cycles in mean that are caused by linear or nonlinear serial depen-
dence in mean ~e+g+, ARCH-in-mean effect; see Engle, Lilien, and Robins,
1987!+6

Because «t is not observed, we need to use an estimated model residual

[«t [ Yt � g~It�1
† , Zu!, t � 1, + + + ,T, (2.4)

where It�1
† is the information set observed at time t � 1 that may involve some

assumed initial values+7 Any MT -consistent parameter estimator Zu can be used+
Examples of Zu are the conditional least squares and quasi–maximum likelihood
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estimators+ With $ [«t %t�1
T , one can consistently estimate f ~0,1,0!~v,0, v! by a

smoothed kernel estimator

Zf ~0,1,0! ~v,0, v! [
1

2p (j�1�T

T�1

~1 � 6 j 60T !102k~ j0p! [sj
~1,0!~0, v!e�ijv,

v � @�p,p# , v � R,

where

[sj
~1,0!~0, v! �

1

T � 6 j 6 (t�6 j 6�1

T

i [«t Zct�6 j 6~v!, (2.5)

Zct�6 j 6~v!� e iv [«t�6 j 6 � [wj~v!, and [wj~v!� ~T � 6 j 6!�1(t�6 j 6�1
T e iv [«t�6 j 6+ Here, p[

p~T ! is a bandwidth, and k :R r @�1,1# is a symmetric kernel+ Examples of
k~{! include the Bartlett, Daniell, Parzen, and quadratic spectral kernels ~e+g+,
Priestley, 1981, p+ 442!+ The factor ~1 � 6 j 60T !102 is a finite-sample correction+
It could be replaced by unity+

Under H0 , the generalized spectral derivative f ~0,1,0!~v,0, v! is a “flat”
spectrum:

f0
~0,1,0!~v,0, v! [

1

2p
s0
~1,0!~0, v!, v � @�p,p# ,u, v � R,

which can be consistently estimated by

Zf0
~0,1,0!~v,0, v! [

1

2p
[s0
~1,0!~0, v!, v � @�p,p# ,u, v � R+

To test H0, Hong and Lee ~2005! compared Zf ~0,1,0!~v,0, v! and Zf0
~0,1,0!~v,0, v!

via an L2-norm+ Their test statistic is

ZM1~ p! [ �(
j�1

T�1

k 2~ j0p!~T � j !�6 [sj
~1,0!~0, v!62 dW~v!� ZC1~ p!��M ZD1~ p!,

(2.6)

where W :Rr R
� is a nondecreasing function that weighs sets symmetric about

zero equally,

ZC1~ p! � (
j�1

T�1

k 2~ j0p!
1

T � j (t�j�1

T�1

[«t
2�6 Zct�j ~v!62 dW~v!, and
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ZD1~ p! � 2 (
j�1

T�2

(
l�1

T�2

k 2~ j0p!k 2~l0p!

� �� � 1

T � max~ j, l !

� (
t�max~ j, l !�1

T

[«t
2 Zct�j ~v! Zct�l ~v ' !�

2

dW~v! dW~v ' !+

Throughout, all unspecified integrals are taken on the support of W ~{!+
An example of W~{! is the N~1,0! cumulative distribution function ~c+d+f+!,
which is commonly used in the characteristic function literature+ The fac-
tors ZC1~ p! and ZD1~ p! are the approximate mean and variance of the quadratic
form T**�p

p 6 Zf ~0,1,0! ~v,0, v!� Zf0
~0,1,0!~v,0, v!62 dvdW~v!+ They have taken into

account the impact of conditional heteroskedasticity and time-varying higher
order conditional moments+ As a result, ZM1~ p! is robust to conditional hetero-
skedasticity and time-varying higher order conditional moments of unknown
form+8 We note that both ZC1~ p! and ZD1~ p! grow to infinity at a rate of p as
p r `, p0T r 0+

Hong and Lee ~2005! showed that ZM1~ p!
d
&& N~0,1! under H0+ Because the

parametric estimator Zu converges to u0 faster than the rate at which the non-
parametric kernel estimator Zf ~0,1,0!~v,0,v! converges to f ~0,1,0!~v,0,v!, the asymp-
totic normal distribution of ZM1~ p! is solely determined by Zf ~0,1,0!~v,0, v!+
Attractively, Zu can be any MT -consistent estimator of u0, and parameter esti-
mation uncertainty has no impact on the asymptotic distribution of ZM1~ p!+ In
other words, the asymptotic distribution of ZM1~ p! is unchanged when Zu is
replaced by its probability limit u0+ This results in significant simplification of
some otherwise difficult contexts+ In particular, only estimated model residuals
are needed to compute the test statistics+

However, the convenient asymptotic nuisance parameter–free property is not
without cost for ZM1~ p!+Although parameter estimation uncertainty has no impact
on the asymptotic distribution of ZM1~ p!, it has an impact on the finite-sample
distribution+ Because g~It�1,u! is a parametric model, Zu can result in at most
an adjustment of a finite number of degrees of freedom to the distribution of
ZM1~ p!+ When the lag order p r ` as T r `, the impact of Zu becomes negli-

gible when normalized by the standard deviation estimator ZD1~ p!102, which grows
to infinity at the rate of p102 + However, asymptotic analysis reveals that the
asymptotically negligible higher order terms in ZM1~ p! that are associated with
parameter estimation uncertainty vanish to zero in probability rather slowly, as
will be seen subsequently+ Therefore, Zu may significantly distort the size of
ZM1~ p! in small and finite samples+ This is particularly the case when there are

relatively many parameters but the sample size T is not large, as is typically
encountered for macroeconomic time series data and low-frequency financial
time series data+
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2.3. Wooldridge’s Device

In a series of important works, Wooldridge ~1990a, 1990b, 1991! proposed a
unified approach to robust, regression-based parametric specification tests for
possibly dynamic time series models, including time series conditional mean
models+ Wooldridge ~1990a! considered the null hypothesis

E @ft ~u0 !6It�1# � 0 for some u0 � Q,

where ft~u! is a measurable, possibly vector-valued function+ In the present
context, ft~u!� i«t~u! in ~2+1!+Wooldridge ~1990a! used a test function Lt~u!�
It�1 and checked if E @Lt~u0!ft~u0!# � 0 by using the sample moment

[m [
1

T (t�1

T

ZLt Zft ,

where ZLt � Lt~ Zu!, Zft � ft~ Zu!, and Zu is a MT -consistent estimator of u0+
Straightforward algebra shows that

MT [m � T �102(
t�1

T

@Lt ~u0 !ft ~u0 !� Lt ~u0 !Ft ~u0 !~ Zu� u0 !#� OP~T
�102 !,

where Ft ~u0! [ E @~]0]u!ft ~u0!6 It�1# + Thus, the asymptotic distribution
of MT [m is jointly determined by T �102(t�1

T Lt ~u0 !ft ~u0 ! and MT ~ Zu � u0!,
unless Ft~u0! � 0 under the null hypothesis+

To remove the impact of parameter estimation uncertainty of Zu on the asymp-
totic distribution of MT [m, Wooldridge ~1990a! first purged from ZLt its linear
projection onto ZFt , a consistent estimator for Ft~u0!, and then considered the
modified test statistic

[md [
1

T (t�1

T

~ ZLt � ZFt
' Zb! Zft ,

where Zb is the ordinary least squares ~OLS! estimator of regressing ZLt on ZFt + It
can be shown that for any MT -consistent estimator Zu,

MT [md � T �102(
t�1

T

@Lt ~u0 !�Ft ~u0 !
'b#ft ~u0 !� OP~T

�102 !,

where b [ p lim Zb+ Thus, the asymptotic distribution of MT [md is robust
to parameter estimation uncertainty because it is not affected by any
MT -consistent estimator Zu up to OP~T �102!+ An asymptotic x2 test can be
obtained by forming a suitable quadratic form in MT [md + We note that the
Wooldridge ~1990a! device does not imply that MT [md has a better asymptotic
approximation than MT [m in finite samples or vice versa+ However, it nicely
generates a new set of moment conditions MT [md that is robust to parameter
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estimation uncertainty up to OP~T �102!+ Consequently, its asymptotic distribu-
tion does not depend on any MT -consistent estimator Zu+ This makes the test
based on MT [md rather convenient in practice+

Although the Wooldridge ~1990a! device may not deliver a better asymptotic
distribution approximation for MT [md , it ideally suits our purpose of improving
the finite-sample performance of the generalized spectral derivative test ZM1~ p!
in ~2+6!, because with a new set of moment conditions, it can make the asymp-
totically negligible higher order terms in ZM1~ p! that are associated with Zu van-
ish faster to 0+ Subsequently, we first describe how the Wooldridge ~1990a!
device can be adapted to ZM1~ p! and then explain why it can improve the asymp-
totic normal approximation for ZM1~ p!+

Although ZM1~ p! is more complicated than the Wooldridge ~1990a! test sta-
tistic, the Wooldridge ~1990a! device can be applied to each generalized covari-
ance derivative [sj

~1,0!~0, v!, which has a similar structure to [m, with Zft � i [«t

and ZLt � Zct�6 j 6~v!+ Based on this observation, we introduce a modified gener-
alized covariance

[gj
~1,0!~0, v! � ~T � 6 j 6!�1 (

t�6 j 6�1

T

i [«t Zht�6 j 6~v!, j � 0,61, + + + ,6~T � 1!, (2.7)

where Zht�6 j 6~v! � Zct�6 j 6~v! � ZGt
' Zb6 j 6~v!, ZGt � ~]0]u!g~It�1

† , Zu!, and

Zbj ~v! � �(
t�1

T

ZGt ZGt
'��1

(
t�6 j 6�1

T

ZGt Zct�6 j 6~v!+ (2.8)

The modified generalized spectral derivative estimators can then be defined as
follows:

ZS ~0,1,0! ~v,0, v! �
1

2p (j�1�T

T�1

k~ j0p!~1 � 6 j 60T !102 [gj
~1,0!~0, v!e�ijv,

v � @�p,p# , v � R, (2.9)

and

ZS0
~0,1,0!~v,0, v! �

1

2p
[g0
~1,0!~0, v!, v � @�p,p# , v � R+

Comparing ZS ~0,1,0!~v,0, v! and ZS0
~0,1,0!~v,0, v! via an L2-norm, we obtain the

modified test statistic

ZM1
d~ p! � �(

j�1

T�1

k 2~ j0p!~T � j !�6 [gj
~1,0!~0, v!62 dW~v!� ZC1

d~ p!��M ZD1
d~ p!,

(2.10)
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where the centering and scaling factors

ZC1
d~ p! � (

j�1

T�1

k 2~ j0p!
1

T � j (t�j�1

T

[«t
2�6 Zht�j ~v!62 dW~v! and

ZD1
d~ p! � 2 (

j�1

T�2

(
l�1

T�2

k 2~ j0p!k 2~l0p!

� �� � 1

T � max~ j, l ! (t�j�1

T

[«t
2 Zht�j ~v! Zht�l ~v ' !�

2

dW~v! dW~v ' !+

To gain insight into why the Wooldridge ~1990a! device can improve the
finite-sample performance of ZM1~ p!, we now provide heuristics+ Put ct~v! �
e iv«t � w~v!, Gt � ~]0]u!g~It�1,u0!, jt�j~v! � ivGt�j e iv«t�j , and hj~v! �
E @Gtct�j~v!# for j � 0 and let Isj

~1,0!~0, v! be defined in the same way as
[sj
~1,0!~0, v! with $«t %t�1

T replacing $ [«t %t�1
T + Then, by a Taylor series expansion

around u0, we have for each j � 0,

[sj
~1,0!~0, v!

� Isj
~1,0!~0, v!� ~ Zu� u0 !

'
1

T � j (t�j�1

T

iGtct�j ~v!

� ~ Zu� u0 !
'

1

T � j (t�j�1

T

i«t jt�j ~v!� OP @~T � j !�1 #

� Isj
~1,0!~0, v!� ~ Zu� u0 !

'ihj ~v!

� ~ Zu� u0 !
'

1

T � j (t�j�1

T

i @Gtct�j ~v!� hj ~v!#

� ~ Zu� u0 !
'

1

T � j (t�j�1

T

i«t jt�j ~v!� OP @~T � j !�1 #

� Isj
~1,0!~0, v!� ~ Zu� u0 !

'ihj ~v!� OP @~T � j !�1 # , (2.11)

where the remainder OP @~T � j !�1# term in the first equality comes from the
higher order terms of the Taylor series expansion, including the effect of replac-
ing the information set It�1

† with It�1+ The last equality follows from Zu � u0 �
OP~T �102!, Chebyshev’s inequality, supv�R E7(t�j�1

T «t jt�j ~v!72 � C~T � j !
under the m+d+s+ property of $«t % as implied by H0, and E7(t�j�1

T @Gtct�j ~v!�
hj~v!#72 � C~T � j ! under suitable mixing conditions on the time series pro-
cess $«t ,Gt

'% ' +
For static conditional mean models where g~It�1,u0! is only a function of

strictly exogenous variables independent of innovations $«t % , we have hj~v!� 0
for all j � 0+ For dynamic conditional mean models where g~It�1,u0! is a func-
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tion of lagged dependent variables and0or lagged innovations, hj~v! is gener-
ally nonzero at least for some j � 0+ To examine the impact of hj~v! on ZM1~ p!,
we use ~2+11! and obtain

(
j�1

T�1

k 2~ j0p!~T � j !�6 [sj
~1,0!~0, v!62 dW~v!

� (
j�1

T�1

k 2~ j0p!~T � j !�6 Isj
~1,0!~0, v!62 dW~v!

� ~ Zu� u0 !
'�(

j�1

T�1

k 2~ j0p!~T � j !�hj ~v!hj
*~v!' dW~v!�~ Zu� u0 !

� 2~ Zu� u0 !
' (

j�1

T�1

k 2~ j0p!~T � j !Re�ihj ~v! Isj
~1,0!~0, v!* dW~v!

� OP~ p0T 102 !

� (
j�1

T�1

k 2~ j0p!Tj�6 Isj
~1,0!~0, v!62 dW~v!� OP~1!� OP~1!� OP~ p0T 102 !,

(2.12)

where the second term in the first equality is OP~1! given MT ~ Zu� u0!� OP~1!
and

(
j�1

T�1

k 2~ j0p!~1 � j0T !�hj ~v!hj
*~v!' dW~v!r (

j�1

` �hj ~v!hj
*~v!' dW~v!� O~1!

by the dominated convergence theorem, where the limit is nonzero when
g~It�1,u0! is a dynamic conditional mean model+ Similarly, the third term in
the first equality is also OP~1! given E6 Isj

~1,0!~0, v!62 � C~T � j !�1 and Cheby-
shev’s inequality+

Using analogous reasoning, we can also obtain that, for the mean and vari-
ance estimators ZC1~ p! and ZD1~ p! in ZM1~ p!,

ZC1~ p! � DC1~ p!� OP~ p0T 102 !, and ZD1~ p!� ED1~ p!� OP~ p0T 102 !,

where DC1~ p! and ED1~ p! are defined in the same way as ZC1~ p! and ZD1~ p! with
$«t %t�1

T replacing $ [«t %t�1
T + Recalling that ZD1~ p! grows at a rate of p, we then

obtain

ZM1~ p! � GM1~ p!� OP~ p
�102 !� OP~ p

1020T 102 !, (2.13)

where GM1~ p! is an infeasible test statistic that is defined in the same way as
ZM1~ p! with $«t %t�1

T replacing $ [«t %t�1
T + In ~2+13!, the OP~ p�102! term arises

because of the effect of Zu and the fact that ZD1~ p!102 @ p102 in probability+
This term vanishes to 0 in probability given p r `+ On the other hand, the
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OP~ p1020T 102! term also vanishes to 0 in probability given p0Tr 0+ As a result,
the asymptotic distribution of ZM1~ p! is determined by the infeasible test statis-
tic GM1~ p!, which is evaluated at u0 and is asymptotically N~0,1! under H0+

In practice, the lag order p usually grows to infinity at a slow rate+ For exam-
ple, when the Bartlett and Parzen kernels are used, the optimal rates for p in
terms of the mean squared error criterion are p @ T 103 and p @ T 105 , respec-
tively+ In these cases we have p�102 @ T �106 and p�102 @ T �1010 , respectively+
The slow convergence of the OP~ p�102! term implies that the asymptotic nor-
mal approximation for ZM1~ p! may be inadequate in finite samples and may
become worse when one has to estimate more parameters+

The slowly vanishing OP~ p�102! term in ZM1~ p! is thus troublesome in finite
samples+ The ability to remove it is highly desirable+ This will improve the
asymptotic N~0,1! approximation for ZM1~ p! in finite samples+ As we illustrate
subsequently, the Wooldridge ~1990a! device ideally suits this purpose, although
it does not necessarily improve the size performance of the Wooldridge ~1990a!
modified parametric m-tests in finite samples+ Let Jgj

~1,0!~0, v! be defined in the
same way as [gj

~1,0!~0, v! with $«t %t�1
T replacing $ [«t %t�1

T + Then, by taking a Tay-
lor series expansion and using reasoning analogous to that of ~2+11!, we have
for j � 0,

[gj
~1,0!~0, v! � Jgj

~1,0!~0, v!� ~ Zu� u0 !
'

1

T � j (j�1

T�1

iGt ht�j ~v!

� ~ Zu� u0 !
'

1

T � j (t�j�1

T

i«t dt�j ~v!� OP @~T � j !�1 #

� Jgj
~1,0!~0, v!� ~ Zu� u0 !

'i§j ~v!� OP @~T � j !�1 # , (2.14)

where ht�j~v! � ct�j~v! � Gt
'bj ~v!, bj~v! � @E~Gt Gt

'!#�1E @Gtct�j ~v!# ,
dt�j~v! � jt�j~v! � Gt

'tj ~v!, tj~v! � @E~Gt Gt
'!#�1E @Gt jt�j ~v!# , and §j~v! �

E @Gt ht�j~v!# + Unlike the function hj~v!� E @Gtct�j~v!# that is associated with
[sj
~1,0!~0, v! in ~2+11!, we always have §j~v!� 0 for all j � 0 in ~2+14!, no matter

whether g~It�1,u0! is a static or dynamic conditional mean model+ It follows
that [gj

~1,0!~0, v! � Jgj
~1,0!~0, v! � OP @~T � j !�1# , and consequently,

(
j�1

T�1

k 2~ j0p!~T � j !�6 [gj
~1,0!~0, v!62 dW~v!

� (
j�1

T�1

k 2~ j0p!~T � j !�6 Jgj
~1,0!~0, v!62 dW~v!� OP~ p0T 102 !+

Therefore, we have

ZM1
d~ p! � GM1

d~ p!� OP~ p
1020T 102 !, (2.15)
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where GM1
d~ p! is an infeasible test statistic that is defined in the same way as

ZM1
d~ p! with $«t %t�1

T replacing $ [«t %t�1
T + Under H0, we have GM1

d~ p! d
&& N~0,1!+

The Wooldridge ~1990a! device does not imply that GM1
d~ p! has a better normal

approximation than GM1~ p! in finite samples or vice versa+9 However, the
OP~ p

�102! term in ~2+13! now disappears in ~2+15!, and the OP~ p
1020T 102! term

vanishes to 0 in probability much faster than OP~ p�102!+ For example, when p
@ T 105, we have p1020T 102 � T �205~compare p�102 @ T �1010!+ We thus expect
finite-sample improvement of the normal approximation for ZM1

d~ p!, because
its asymptotically negligible higher order terms vanish to 0 in probability faster
than the higher order terms in ZM1~ p!+ We emphasize that the finite-sample
improvement is achieved by combining Wooldridge’s device and the non-
parametric testing approach+ As pointed out earlier, Wooldridge’s device alone
does not necessarily improve the finite-sample performance+ Intuitively, for each
[sj
~1,0!~0, v!, there is an impact of parameter estimation uncertainty+ In particu-

lar, a Taylor series expansion of ~T � j !102 [sj
~1,0!~0, v! around u0 reveals that

replacing Zu for u0 affects the asymptotic distribution, although the cumulative
effect of replacing Zu for u0 becomes asymptotically negligible when we employ
an increasing number of lags, making ZM1~ p! robust to parameter estimation
uncertainty ~this differs from the parametric m-tests based on MT [m!+ In con-
trast, a Taylor series expansion of ~T � j !102 [gj

~1,0!~0, v! around u0 reveals
that the asymptotic distribution of ~T � j !102 [gj

~1,0!~0, v! is the same as that
of ~T � j !102 Jgj

~1,0!~0, v!+ By applying the Wooldridge ~1990! device to each
[sj
~1,0!~0, v! and using [gj

~1,0!~0, v! instead, we can effectively reduce the impact
of parameter estimation uncertainty to a higher order+ Thus, we expect more
robustness of ZM1

d~ p! to parameter estimation uncertainty in finite samples+
One important difference between the Wooldridge ~1990a! test and ZM1

d~ p! is
that Wooldridge ~1990a! checks a fixed number of moment conditions whereas
ZM1

d~ p! checks an increasing number of moment conditions as T r `+ In fact,
a plausible alternative approach that is closer in spirit to the Wooldridge ~1990a!
test is to consider the following sample moment condition:10

ZG~v! �
1

T (t�p�1

T

i [«t ZLt ~v!, v � R,

where ZLt~v! � ZCt~v! � ZGt
' ZB~v!, ZCt~v! � @ Zct�1~v!, + + + , Zct�p~v!# ', ZB~v! �

~(t�p�1
T ZGt ZGt

'!�1(t�p�1
T ZGt ZCt ~v! is the OLS coefficient of regressing ZCt~v! on

ZGt , and p is a fixed lag order+ Straightforward algebra shows that

MT ZG~v! � T �102 (
t�p�1

T

i«tLt ~v!� OP~T
�102 !,

where Lt~v! � Ct~v! � Gt
'B~v!, where Ct~v! � @ct�1~v!, + + + ,ct�p~v!# ' and

B~v! � @E~Gt Gt
'!#�1E @GtCt ~v!# + It follows that MT ZG~v! n Z~v! on every
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compact set on R, wheren denotes weak convergence, and Z~v! is a complex-
valued Gaussian process with mean 0 and variance-covariance kernel
cov@Z~v1!, Z~v2!#� E @«t

2Lt ~v1!Lt
*~v2 !' # for v1, v2 � R+ To construct a test sta-

tistic, we can define a quadratic form

ZW � T� ZG~v!' ZV �1~v! ZG *~v! dW~v!,

where ZV~v! � T �1(t�p�1
T [«t

2 ZLt ~v! ZLt
*~v!' + Under suitable regularity conditions

and using the continuous mapping theorem, we expect that under H0,

ZW d
&& �xp

2~v! dW~v!,

where xp
2~v! [ Z~v!'V �1~v!Z *~v! may be called a chi-squared process ~see

Hansen, 1996, p+ 417!, with V~v!� E @«t
2Lt ~v!Lt

*~v!' # + This test is also robust
to conditional heteroskedasticity of unknown form+ Unfortunately, the asymp-
totic distribution of *xp

2~v! dW~v! is not distribution free; it depends on the
data generating process ~DGP! and cannot be tabulated+ This asymptotic distri-
bution, however, can be consistently approximated using the Hansen ~1996!
resampling method+ Because the asymptotic analysis is rather involved and the
simulation study is computationally intensive, we defer the investigation of this
approach to future research+

3. ASYMPTOTIC DISTRIBUTION

In Sections 3 and 4, we will compare the asymptotic properties of the modified
test ZM1

d~ p! in ~2+10! and the unmodified test ZM1~ p! in ~2+6! under H0 and HA,
respectively+ To derive the null limiting distribution of ZM1

d~ p!, we first give
some regularity conditions+

Assumption A+1+ $Yt % is a strictly stationary time series process such that
m t [ E~Yt 6It�1! exists a+s+, where It�1 is an information set at time t � 1 that
may contain lagged dependent variables $Yt�j , j � 0% in addition to current and
lagged exogenous variables $Zt�j , j � 0%+

Assumption A+2+ g~It�1,u! is a parametric model for m t , where u � Q is a
finite-dimensional parameter and Q is a parameter space, such that ~a! for each
u � Q, g~{,u! is measurable with respect to It�1; ~b! with probability one,
g~It�1,{! is continuously twice differentiable with respect to u � Q, and
E supu�Q7~]0]u!g~It�1,u!74 � C and E supu�Q7~]20]u]u '!g~It�1,u!72 � C; and
~c! E @~]0]u!g~It�1,u!~]0]u '!g~It�1,u!# is nonsingular for u � Q+
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Assumption A+3+ Let It
† be an observed information set available at time t

that may contain some assumed initial values+ Then

lim
Tr`
(
t�1

T

�E�sup
u�Q
6g~It�1

† ,u!� g~It�1,u!6�4	104
� C, and

lim
Tr`
(
t�1

T �E�sup
u�Q

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!���2	102

� C+

Assumption A+4+ Zu � u0 � OP~T �102!, where u0 [ p lim~ Zu! � int~Q!+

Assumption A+5+ Put «t [ Yt � g~It�1, u0! and Gt [ ~]0]u!g~It�1, u0!+
Then $«t ,Gt

'% ' is a strictly stationary a-mixing process with a-mixing coeffi-
cient a~ j ! satisfying (j��`

` j 2a~ j !~n�1!0n � ` for some y � 1+ In addition,
E~«t

2! � s 2 and E~«t
4! � C+

Assumption A+6+ k :R r @�1,1# is symmetric about 0 and is continuous at
0 and all points except a finite number of points, with k~0! � 1 and 6k~z!6 �
C 6z 6�b as z r ` for some b � 3+

Assumption A+7+ W :R r R
� is nondecreasing and weighs sets symmetric

about zero equally, with *�`
` v 4 dW~v! � C+

Assumption A+8+ For each sufficiently large integer q, there exists a strictly
stationary process $«q, t % such that as q r `, «q, t is independent of It�q�1 for
each t, E~«q, t 6It�1! � 0 a+s+ , E~«t � «q, t !

4 � Cq�2k for some constant k � 1,
and E~«q, t

4 ! � C+

Assumption A+1 imposes a strict stationarity condition on the process $Yt % +
The existence of the conditional mean m t can be ensured by assuming that
E~Yt

2! � `+ Assumption A+2 is a standard regularity condition on the condi-
tional mean model g~It�1,u!+ For a ~static or dynamic! linear regression model
g~It�1,u!� Xt

'u, where Xt � It�1 is finite-dimensional, it suffices if E7Xt74 �
C and E~Xt Xt

'! is nonsingular+ Assumption A+2 covers many stationary nonlin-
ear time series conditional mean models, such as nonlinear moving-average,
bilinear, exponential, Markov regime-switching, smooth transition, and Pois-
son jump autoregressive models+ It also covers threshold autoregressive mod-
els with known thresholds+An example is the class of self-exciting autoregressive
threshold models for the U+S+ economy, where the recession and the expansion
are defined as the gross domestic product ~GDP! growth rate being larger or
smaller than zero ~e+g+, Potter, 1995!+ However, Assumption A+2 rules out the
autoregressive threshold models with unknown thresholds as considered in
Hansen ~2000!, where g~It�1,u! is not continuous in threshold parameters+ We
conjecture that our tests are applicable to these models under additional regu-
larity conditions, but we do not attempt to justify this here, which is beyond
the scope of this paper+ We note that Assumption A+2~c! was not needed for
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ZM1~ p!, but it is needed for ZM1
d~ p! because we use a sequence of auxiliary OLS

regressions+
Assumption A+3 is a condition on the truncation of information set It�1, which

usually contains information dating back to the very remote past and so may
not be completely observable+ Because of the truncation, one may have to assume
some initial values in estimating the model g~It�1,u!+ Assumption A+3 ensures
that the use of initial values, if any, has no impact on the limiting distribution
of ZM1

d~ p!+ For instance, consider an ARMA~1,1! model:

g~It�1,u! � aYt�1 � b«t�1,

where 6a6 � Ta � 1 and 6b 6 � Nb � `+ Here It�1 � $Yt�1,Yt�2, + + +% but It�1
† �

$Yt�1,Yt�2, + + + ,Y1, S«0%, and S«0 is an initial value assumed for «0+ By recursive
substitution, Hong and Lee ~2005! showed

(
t�1

T

�E�sup
u�Q
6g~It�1

† ,u!� g~It�1,u!6�4	104

� Nb (
t�1

T

6 Ta6t�1�@E~«0
4!#104(

l�0

`

Ta l � @E6 S«0
4 6#104�� C+

Similarly we can show that the information truncation condition for
$~]0]u!g~It�1

† ,u! � ~]0]u!g~It�1,u!% in Assumption A+3 holds for the
ARMA~1,1! model+ This condition was not needed for ZM1~ p! but is needed for
ZM1

d~ p!+
Assumption A+4 requires a MT -consistent estimator Zu, which need not be

asymptotically most efficient+ It can be a conditional least squares estimator or
a conditional quasi–maximum likelihood estimator+ Also, we need not know
the asymptotic expansion structure of Zu, because the sampling variation in Zu
does not affect the asymptotic distribution of ZM1

d~ p!+ These features are similar
in spirit to the Wooldridge ~1990a! modified m-tests+ Assumption A+5 imposes
mixing conditions on $«t ,Gt

'% ', which restrict the degree of the serial depen-
dence in $«t ,Gt

'% '+ The mixing condition is suitable and convenient for nonlin-
ear time series analysis+ For more discussion on mixing conditions, see ~e+g+!
White ~2001!+

Assumption A+6 is a regularity condition on the kernel k~{!+ It includes all
commonly used kernels in practice+ The condition of k~0! � 1 ensures that the
asymptotic bias of the smoothed kernel estimator ZS ~0,1,0!~v,0, v! in ~2+9! van-
ishes to 0 as T r `+ The tail condition on k~{! requires that k~z! decays to
zero sufficiently fast as 6z 6r `+ It is more stringent than that imposed in Hong
and Lee ~2005!+ It implies that *0

`~1 � z 2!6k~z!6 dz � `+ This condition rules
out the Daniell and quadratic spectral kernels, whose b � 2+11 However, it
includes all kernels with bounded support, such as the Bartlett and Parzen ker-
nels, because they have b �`+ Assumption A+7 is a condition on the weighting
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function W~{! for the transform parameter v+ It is satisfied by the c+d+f+ of any
symmetric continuous distribution with a finite fourth moment+

Assumption A+8 is required only under H0+ It assumes that when q is suffi-
ciently large, the m+d+s+ $«t % can be approximated by a q-dependent m+d+s+ pro-
cess $«q, t % arbitrarily well+ Horowitz ~2003! imposed a similar condition in a
different context+ Because $«t % is an m+d+s+ under H0, Assumption A+8 essen-
tially imposes restrictions on the serial dependence in the higher order moments
of $«t %+ It holds trivially when $«t % is a q0-dependent process with an arbi-
trarily large but fixed order q0+ It also covers many non-Markovian processes+
For example, Hong and Lee ~2005! showed that Assumption A+8 holds for a
threshold GARCH~1,1! error process that includes a standard GARCH process
as a special case:

�«t � ht
102 zt , $zt % ; i+i+d+~0,1!,

ht � g� aht�1 � b�«t�1
2 1~«t�1 � 0!� b�«t�1

2 1~«t�1 � 0!,

provided r � 1, where r [ a� b� � ~b� � b�!E @zt
2 1~zt � 0!# and 1~{! is an

indicator function+ It also holds for a general stochastic volatility process:


«t � exp�1

2
ht�zt , $zt % ; i+i+d+~0,1!,

ht � a0 �(
j�1

`

ajht�j � ht , $ht % ; i+i+d+N~0,s 2 !,

where (j�1
` aj

2 � `, E~zt
4! � `, and $zt % and $ht % may not be independent of

each other+
We now state the asymptotic distribution of the ZM1

d~ p! test under H0+

THEOREM 1+ Suppose Assumptions A.1–A.8 hold and p � cT l for
0 � l � ~3 � ~10~4b � 2!!!�1 and 0 � c � `. Then ZM1

d~ p!� ZM1~ p!
p
&& 0 and

ZM1
d~ p! d

&& N~0,1! under H0.

As with the original test ZM1~ p!, we obtain the convenient asymptotic N~0,1!
distribution for the modified test ZM1

d~ p!, but the latter is expected to have a
better finite-sample performance+ Theorem 1 also implies that ZM1~ p! and
ZM1

d~ p! are asymptotically equivalent under H0+ The asymptotic equivalence
holds even if the orthogonality condition that T �102(t�1

T ZGt [«t
p
&& 0 fails+ This

orthogonality condition is needed for the Wooldridge ~1990a! modified and
unmodified parametric m-tests to be asymptotically equivalent under the null
hypothesis ~see Wooldridge, 1990a, Lem+ 2+2, pp+ 28–29!+ It will hold when
one uses the nonlinear least squares estimator
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Zu � arg min
u�Q
(
t�1

T

@Yt � g~It�1
† ,u!# 2+

The asymptotic equivalence between ZM1~ p! and ZM1
d~ p! under H0 has an

important implication+ Although we do not formally analyze it here, we expect
that the asymptotic equivalence between ZM1~ p! and ZM1

d~ p! will continue to
hold under a suitable class of local alternatives to H0 ~for a similar discussion
on unmodified and modified parametric m-tests, see Wooldridge, 1990a, p+ 29!+
In other words, ZM1

d~ p! will be asymptotically as powerful as ZM1~ p! under a
class of local alternatives+

We now summarize the procedures to implement the modified test ZM1
d~ p! as

follows+

Step 1+ Obtain a MT -consistent estimator Zu ~e+g+, the nonlinear least squares
estimator! for the conditional mean model g~It�1,u! and save the esti-
mated residual [«t +

Step 2+ Compute ZGt � ~]0]u!g~It�1
† , Zu!+ For a linear regression model

g~It�1,u! � Xt
'u, we have ZGt � Xt , the regressor vector+

Step 3+ For each lag order j from 1 to T � 1, run an OLS regression of Zct�j~v!
on ZGt , where we set Zct~v!� 0 for t � 0+12 Save the estimated resid-
ual Zht�j~v!+ If the kernel k~{! has a bounded support ~i+e+, k~z!� 0 if
6z 6 � 1!, then it suffices to run regressions for j from 1 to p+

Step 4+ Compute the modified test statistic ZM1
d~ p! in ~2+10!+

Step 5+ Compare ZM1
d~ p! with an upper tailed N~0,1! critical value ~e+g+,

1+645 at the 5% level! and reject H0 at a suitable significance level if
ZM1

d~ p! is larger than the critical value+

We note that for a static conditional mean model g~It�1,u!� g~Xt ,u!, where
Xt is a strictly exogenous random vector independent of innovations $«t %, we
need not use the Wooldridge ~1990a! device because, as pointed out earlier, the
impact of parameter estimation uncertainty has been a rather small order in this
case and the Wooldridge ~1990a! device cannot further reduce the order of mag-
nitude for the higher order terms in ZM1~ p! that are associated with Zu+ However,
for a dynamic conditional mean model g~It�1,u!� g~Xt ,u!, where Xt contains
lagged dependent variables and0or lagged innovations, the Wooldridge ~1990a!
device can reduce the order of magnitude of the higher order terms in ZM1

d~ p!
that are associated with Zu, thus achieving a better normal approximation in small
and finite samples+

In this paper we have focused on time series conditional mean models with
additive errors in ~2+1!+ In fact, our approach is also applicable to a time series
conditional mean model with multiplicative errors:

Yt � g~It�1,u!«t ~u!, (3.1)

where $Yt % is a nonnegative stochastic time series, g~It�1,u! is a parametric
model for the conditional mean E~Yt 6It�1!, and «t~u! is a nonnegative multipli-
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cative error+ Examples of the model in ~3+1! include the Engle and Russell ~1998!
autoregressive conditional duration model for duration times of financial events
and its various extensions+ When and only when the model g~It�1,u! is cor-
rectly specified for E~Yt 6It�1!, we have

E $@«t ~u0 !� 1#6It�1% � 0 a.s. for some u0 � Q+

The generalized spectral derivative tests can be applied to the model in ~3+1!,
with the estimated residual [«t and the gradient ZGt used in ZM1

d~ p! being re-
placed by [«t � Yt 0g~It�1

† , Zu! � 1 and ZGt � ~]0]u! ln g~It�1
† , Zu!+

4. ASYMPTOTIC POWER

To investigate the power property of ZM1
d~ p!, particularly the impact of the

auxiliary regressions on the asymptotic power of ZM1
d~ p!, we consider the

asymptotic behavior of ZM1
d~ p! under HA+ For this purpose, we define the pop-

ulation modified generalized spectrum

S~v,u, v! �
1

2p (j��`

`

gj ~u, v!e�ijv, v � @�p,p# , u, v � R, (4.1)

where gj~u, v! � cov@e iu«t, ht�j ~v!# , ht�j~v! � ct�j~v! � Gt
'bj ~v!, Gt �

~]0]u!g~It�1,u0!,

bj ~v! � @E~Gt Gt
'!#�1E @Gtct�j ~v!# , (4.2)

and ct~v! � e iv«t � w~v!+ We also define the population modified generalized
“flat” spectrum:

S0~v,u, v! �
1

2p
g0~u, v!, v � @�p,p# , u, v � R+

Then the partial derivatives of the modified generalized spectrum are
S ~0,1,0!~v,0, v! [ ~]0]u!S~v,u, v!6u�0 and S0

~0,1,0!~v,0, v! [ ~]0]u!S0~v,u, v!6u�0,
provided these partial derivatives exist+ With these notations, we can state
Theorem 2+

THEOREM 2+ Suppose Assumptions A.1–A.7 hold and p � cT l for 0 �
l � 1

2
_ and 0 � c � `. Then as T r `,

~ p1020T ! ZM1
d~ p!

p
&& �2Dd�

0

`

k 4~z! dz��102

�p��
�p

p

6S ~0,1,0! ~v,0, v!� S0
~0,1,0!~v,0, v!62 dvdW~v!

� �2Dd�
0

`

k 4~z! dz��102

(
j�1

` �6gj
~1,0!~0, v!62 dW~v!,
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where Dd [ s
4(j��`

` **6rj ~u, v!62 dW~u! dW~v! and rj~u, v! � cov@ht~u!,
ht�j~v!# +

The constant Dd takes into account the impact of serial dependence in con-
ditioning functions $ht�j~v!, j � 0%, which generally exists even under H0, due
to the presence of serial dependence in the conditional variance and higher order
moments of $«t % + It has also taken into account the impact of the auxiliary regres-
sions on the behavior of ZM1

d~ p!+ For comparison, we have from Hong and Lee
~2005, Thm+ 2! that for the unmodified test,

~ p1020T ! ZM1~ p!
p
&& �2D �

0

`

k 4~z! dz��102

�p��
�p

p

6 f ~0,1,0! ~v,0, v!� f0
~0,1,0!~v,0, v!62 dvdW~v!

� �2D�
0

`

k 4~z! dz��102

(
j�1

` �6sj
~1,0!~0, v!62 dW~v!,

where D [ s 4(j��`
` **6sj ~u, v!62 dW~u! dW~v!+ Clearly, ZM1

d~ p! and ZM1~ p!
are not asymptotically equivalent under HA because they do not converge to
the same probability limit after being multiplied by the rate p1020T+ Unlike the
case under H0, where the auxiliary regressions have no impact on the asymp-
totic distribution of ZM1

d~ p!, the auxiliary regressions have impact on the prob-
ability limit of ~ p1020T ! ZM1

d~ p! under HA+
We now discuss how the auxiliary regressions may affect the power of ZM1~ p!+

Suppose the autoregression function E~«t 6«t�j !� 0 at some lag j � 0+ Then we
have *6sj

~1,0!~0, v!62 dW~v! � 0 for any weighting function W~{! that is posi-
tive, monotonically increasing, and continuous, with unbounded support on R+
It follows that P @ ZM1~ p! � C~T !# r 1 for any sequence of constants C~T ! �
o~T0p102!, and so the unmodified test ZM1~ p! has asymptotic unit power at any
given significance level a � ~0,1!, whenever E~«t 6«t�j ! is nonzero at some lag
j � 0+ This is the reason why ZM1~ p! has omnibus power against a wide variety
of linear and nonlinear alternatives with unknown lag structure, as is confirmed
in the Hong and Lee ~2005! simulation+ It avoids the blindness of searching for
different alternatives when one has no prior information+

Theorem 2 indicates that the power of ZM1
d~ p! depends on whether

gj
~1,0!~0, v! � 0 at least for some j � 0 under HA+ Note that gj

~1,0!~0, v! �
sj
~1,0!~0, v! generally under HA+ However, if we have either ~i! E~Gt«t ! � 0

or ~ii! bj~v! � 0 for all j � 0 under HA, then gj
~1,0!~0, v! � sj

~1,0!~0, v! for all
v � R+ In these cases, ZM1

d~ p! has the same consistency property as ZM1~ p!,
although their probability limits still may be different, because of the fact that
the denominator Dd depends on bj~v! when bj~v! � 0 at least for some j � 0+
The case that bj~v! � 0 for all j � 0 can arise when g~It�1,u0! � g~Xt ,u0!,
where Xt is a strictly exogenous vector independent of innovations $«t %+ The
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case that E~Gt«t !� 0 can arise under HA even when g~It�1,u0! contains lagged
dependent variables and0or lagged innovations+ In particular, when Zu is a non-
linear least squares estimator, i+e+, Zu � arg minu�Q (t�1

T @Yt � g~It�1,u!# 2, then
u0 � p lim Zu will satisfy the condition that E~Gt«t !� E @~]0]u!g~It�1,u0!«t #� 0
under HA+

When E~Gt«t !� 0 and bj~v!� 0 at least for some j � 0, we generally have
gj
~1,0!~0, v! � 0 if sj

~1,0!~0, v! � 0+ However, there exists a certain model mis-
specification against which the modified test ZM1

d~ p! has no power+ This arises
when gj

~1,0!~0, v! � 0 for all j � 0 but sj
~1,0!~0, v! � 0 for some j � 0+ Let

a [ @E~Gt Gt
'!#�1E~Gt «t !

be the least squares coefficient of regressing «t on Gt + Then the possibility that
gj
~1,0!~0, v! � 0 for all j � 0 but sj

~1,0!~0, v! � 0 for all j � 0 can arise if and
only if

sj
~1,0!~0, v! � ia 'E~Gt Gt

'!bj ~v!� icov@a 'Gt ,Gt
'bj ~v!# for all j � 0,

i+e+, if and only if the covariance between «t and e iv«t�j coincides with the
covariance between their linear projections onto Gt + This occurs when the
neglected dynamics in mean takes the form of E~«t 6It�1!� a

' @Gt � E~Gt !# + In
this ~pathological! case, the modified test ZM1

d~ p! has no power+ This is the
price that we have to pay when using the Wooldridge ~1990a! device, as is also
the case in parametric testing ~for discussion, see White, 1994, Ch+ 9!+ How-
ever, we emphasize that the gain in the size improvement from using Wool-
dridge’s device for our tests overwhelms the possible power loss in detecting
misspecification in the direction of the gradient Gt + More importantly, if the
nonlinear least squares estimator is used, ZM1

d~ p! will be able to detect such
pathological misspecification and achieve the same consistency property as the
original test ZM1~ p!+

Because existing tests for time series conditional mean models only consider
a fixed order lag, they can easily miss misspecifications at the higher lag orders+
Of course, these tests could be used to check a large number of lags when a
large sample is available+ However, they are not expected to be powerful against
many alternatives of practical importance, because of the loss of a large num-
ber of degrees of freedom+ This power loss is greatly alleviated for our tests as
a result of the use of k 2~{!+ Most nonuniform kernels discount higher order
lags+ This enhances good power against the alternatives whose serial depen-
dence in mean decays to zero as lag order j increases+ Thus, our tests can check
a large number of lags without losing too many degrees of freedom+ This fea-
ture is not shared by popular chi-square-type tests with a large number of lags,
which essentially give equal weighting to each lag+ Equal weighting is not fully
efficient when a large number of lags is used+

Once the model g~It�1,u! is rejected by ZM1
d~ p!, one may want to go further

to explore possible sources of model misspecification in mean+ For this pur-
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pose, we can further differentiate the modified generalized spectral derivative
S ~0,1,0!~v,0, v! with respect to v at 0 and construct a sequence of tests similar in
spirit to ZM1

d~ p!+ Specifically, the partial derivatives

gj
~1, l !~0,0! [

] l

]v l
gj
~1,0!~0, v!6v�0

� cov�i«t , ~i«t�j !
l � Gt

'
d l

dv l
bj ~0!� , l � 0,1,2, + + + ,

can be used+ For l � 1,2,3,4, tests based on these derivatives can check whether
there exist linear correlation, ARCH-in-mean, skewness-in-mean, and kurtosis-
in-mean effects, respectively+ ARCH-in-mean effects are important in finance,
and the recent literature has also documented time-varying skewness and
kurtosis and their economic significance in asset pricing ~e+g+, Harvey and
Siddique, 1999, 2000!+

5. MONTE CARLO EVIDENCE

The results of Theorems 1 and 2 are asymptotic+ Nothing is known about the
finite-sample performance of the modified test ZM1

d~ p! relative to the unmodi-
fied test ZM1

d~ p!+ We now investigate their finite-sample performance+

5.1. Simulation Design

5.1.1. Size. To examine the sizes of the tests under H0, we consider the
following AR~d ! processes:

Yt � (
j�1

d

0+5 jYt�j � «t ,

where ~i! «t � zt or ~ii! «t � ht
102 zt , ht � 0+43 � 0+57«t�1

2 , where $zt % ;
i+i+d+N~0,1!+13 Under ~i!, $«t % ; i+i+d+ , whereas under ~ii!, $«t % is an ARCH~1!
process+

The null conditional mean model for Yt is an AR~d ! model with intercept:

g~It�1,u! � u1 �(
j�1

d

uj�1Yt�j+ (5.1)

To examine the impact of increasing the number of estimated autoregressive
parameters, we consider d � 1,2,3,4, respectively+ The OLS estimator Zu is
consistent for parameter u0 [ ~u1, + + + ,ud�1!

' + The model error $«t~u0!% is con-
ditionally homoskedastic under the i+i+d+ innovations and is conditionally het-
eroskedastic under the ARCH innovations+ This allows us to examine the
robustness of the tests to conditional heteroskedasticity+We have chosen ARCH
parameter values such that E~«t

4! � `, thus satisfying Assumption A+5+14 To
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examine the size, we consider three sample sizes: T � 100, 250, and 500+ For
each T, we generate 1,000 data sets using a GAUSS Windows version 5+0 ran-
dom number generator on a personal computer+ For each iteration, we first gen-
erate T � 100 observations and then discard the first 100 to reduce the impact
of some initial values+

5.1.2. Power. Next, we examine the power of the tests for neglected non-
linearity or dynamic misspecification, i+e+, lag order misspecification in mean+
Following Hong and Lee ~2005!, we consider the following data DGPs:

DGP P+1 @Bilinear~1!#: Yt � 0+5Yt�1 � 0+6Yt�1«t�1 � «t ,

DGP P+2 @NMA~1!#: Yt � 0+5Yt�1 � 0+6«t�1
2 � «t ,

DGP P+3 @EXP � AR~1!#: Yt � 0+5Yt�1 � 10Yt�1 exp~�Yt�1
2 !� «t ,

DGP P+4 @SETAR~1!#: Yt � �0+5Yt�1 � «t if Yt�1 � 0,

�0+5Yt�1 � «t if Yt�1 � 0,

DGP P+5 @STAR~1!#: Yt � 1 � 0+5Yt�1 � ~4 � 0+4Yt�1!G~2Yt�1!� «t ,

where G~z!� @1 � exp~�z!#�1,

DGP P+6 @ARMA~1,1!#: Yt � 0+5Yt�1 � 0+5«t�1 � «t ,

DGP P+7 @NMA~5!#: Yt � 0+5Yt�1 �(
j�1

5

0+5 j«t�j
2 � «t ,

DGP P+8 @SIGN AR~6!#: Yt � 1~Yt�6 � 0!� 1~Yt�6 � 0!� «t ,

where $«t % is i.i.d.N~0,1!+ These DGPs are discussed in Hong and Lee ~2005!+
We will examine the power of the modified test ZM1

d~ p! relative to the unmod-
ified test ZM1~ p! for two sample sizes: T � 100 and 250+ For each T, we gener-
ate 500 data sets+

To compute ZM1~ [p0! and ZM1
d~ [p0 !, we use the N~1,0! c+d+f+ truncated on

@�3,3# for the weighting function W~{!, and we use the Parzen kernel

k~z! � 

1 � 6z 2 � 6 6z 63 if 6z 6�

1

2
,

2~1 � 6z 6!3 if
1

2
� 6z 6 � 1,

0 otherwise,

which has a bounded support and is computationally efficient+ For the choice
of lag order p, we use a data-driven lag order [p0 via the plug-in method described
in Hong and Lee ~2005, Sect+ 6!,with the Bartlett kernel Ok~z!� ~1� 6z6!1~6z6� 1!
used in the preliminary generalized spectral derivative estimators+ To certain
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extent, the data-driven lag order [p0 lets data tell an appropriate lag order, but it
still involves the choice of the preliminary bandwidth Tp, which is somewhat
arbitrary+ To examine the impact of the choice of the preliminary bandwidth Tp,
we consider Tp � 10, 15, 20, 25, 30, which cover a sufficiently wide range of
preliminary lag orders+

5.2. Monte Carlo Evidence

Tables 1 and 2 report the empirical rejection rates of the tests under H0 at the
10% and 5% significance levels, using the asymptotic theory+We first consider
the unmodified test ZM1~ [p0!+ When the DGP is an AR~d ! process with i+i+d+
errors, ZM1~ [p0! underrejects H0 severely at both the 10% and 5% levels ~partic-
ularly for larger d !, even when T � 500+ When the DGP is an AR~d ! process
with ARCH errors, ZM1~ [p0! also shows underrejection ~particularly when T �
100!, but the sizes are better than under DGPs with i+i+d+ errors when T � 250,
and they improve as T increases+ Overall, as the lag order d of the AR model
increases, ZM1~ [p0! displays more severe underrejection ~except for the case at
the 5% level and when T � 500!, thus confirming our conjecture+

To investigate whether the underrejection of ZM1~ [p0! is due to the impact of
parameter estimation uncertainty, we also report the rejection rates of the infea-
sible test statistic GM1~ [p0! of ~2+13! that uses the true errors $«t % rather than the
estimated model residuals $ [«t %+When $«t % is i+i+d+, GM1~ [p0! outperforms ZM1~ [p0!
for all sample sizes T, and its sizes are reasonable and are robust to the choice
of the preliminary lag order Tp+ Note that the rejection rates of GM1~ [p0! remain
unchanged when the order of the AR~d ! model increases, because GM1~ [p0! does
not use the estimated model residuals $ [«t % + When $«t % is ARCH~1!, GM1~ [p0!
shows some underrejections when T � 100, but its sizes become reasonable
when T � 250+ For all sample sizes T, GM1~ [p0! outperforms ZM1~ [p0!+ These results
confirm our theory that parameter estimation uncertainty has nontrivial impact
on ZM1~ [p0! in finite samples+ In particular, parameter estimation is like a cali-
bration that makes the estimated model residuals look more like an m+d+s+, lead-
ing to underrejection of the test+

For each sample size T and each preliminary lag order Tp, the means of the
data-driven lag [p0 are the same or very similar for all ZM1~ [p0!, GM1~ [p0!, and
ZM1

d~ [p0 !, regardless of the order of the AR~d ! model and the types ~i+i+d+ or
ARCH~1!! of the errors+ When the preliminary lag Tp changes from 10 to 30,
the means of [p0 range from 4+6 to 7+2 for T � 100, from 5+5 to 7+2 for T � 250,
and from 6+2 to 7+3 for T � 500+ These results indicate relative robustness of [p0

to the choice of Tp+15

We now turn to the modified test ZM1
d~ [p0 ! to examine whether the Wool-

dridge ~1990a! device can effectively reduce the impact of parameter estimation
uncertainty on the sizes of the test+ For T � 100, ZM1

d~ [p0 ! shows some over-
rejections when the order d of the AR~d ! model is relatively large+ However, it
has reasonable sizes under all DGPs for T � 250+ The ZM1

d~ [p0 ! test performs
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Table 1. Empirical size of tests under i+i+d+ errors

T T � 100 T � 250 T � 500

10% 5% 10% 5% 10% 5%

Tp M1 GM1 M1
d M1 GM1 M1

d M1 GM1 M1
d M1 GM1 M1

d M1 GM1 M1
d M1 GM1 M1

d

AR~1!: Yt � 0+5Yt�1 � «t , «t ; i+i+d+N~0,1!
10 3+0 8+3 9+4 1+5 5+4 5+9 4+4 9+8 10+5 2+6 6+7 6+1 4+6 11+2 11+0 3+8 6+0 7+2
15 3+3 7+9 9+3 1+8 5+5 6+0 4+4 9+8 10+5 2+6 6+7 6+1 4+6 11+2 11+0 3+8 6+0 7+2
20 3+6 8+0 8+9 1+8 5+3 5+2 4+5 10+2 10+1 2+6 6+7 5+7 4+6 11+2 11+0 3+8 6+0 7+2
25 3+6 7+9 9+0 1+8 5+3 4+8 4+1 9+8 9+4 2+8 6+2 5+5 4+7 11+2 11+0 4+0 6+0 7+2
30 3+9 7+8 8+9 2+0 5+4 4+8 4+2 10+5 8+5 2+6 5+7 5+6 4+5 10+6 10+7 4+0 6+4 6+9

AR~2!: Yt � 0+5Yt�1 � 0+25Yt�2 � «t , «t ; i+i+d+N~0,1!
10 1+3 8+3 11+3 0+5 5+4 7+2 1+6 9+8 9+1 0+9 6+7 6+0 2+2 11+2 11+5 1+1 6+0 7+8
15 1+2 7+9 11+0 0+5 5+5 7+3 1+6 9+8 9+1 0+9 6+7 6+0 2+2 11+2 11+5 1+1 6+0 7+8
20 1+2 8+0 11+4 0+6 5+3 6+5 1+8 10+2 9+2 0+9 6+7 5+9 2+2 11+2 11+5 1+1 6+0 7+8
25 1+4 7+9 11+0 0+6 5+3 6+0 1+8 9+8 8+6 0+9 6+2 6+0 2+4 11+2 11+4 1+1 6+0 7+6
30 1+7 7+8 10+2 0+6 5+4 5+5 1+9 10+5 8+6 1+0 5+7 5+6 2+7 10+6 11+0 1+3 6+4 7+4

AR~3!: Yt � (j�1
3 0+5 jYt�j � «t , «t ; i+i+d+N~0,1!

10 0+9 8+3 10+8 0+2 5+4 7+3 0+8 9+8 8+7 0+5 6+7 6+1 0+9 11+2 9+1 0+3 6+0 6+2
15 0+8 7+9 10+7 0+2 5+5 7+5 0+8 9+8 8+7 0+5 6+7 6+1 0+9 11+2 9+1 0+3 6+0 6+2
20 0+8 8+0 11+0 0+2 5+3 7+2 0+8 10+2 8+6 0+5 6+7 5+9 0+9 11+2 9+1 0+3 6+0 6+2
25 0+7 7+9 10+9 0+1 5+3 7+2 0+8 9+8 8+1 0+6 6+2 5+7 1+0 11+2 9+1 0+4 6+0 6+3
30 0+7 7+8 10+8 0+1 5+4 7+0 1+0 10+5 8+0 0+5 5+7 5+3 1+1 10+6 9+6 0+6 6+4 6+4

AR~4!: Yt � (j�1
4 0+5 jYt�j � «t , «t ; i+i+d+N~0,1!

10 0+7 8+3 12+3 0+3 5+4 9+5 0+9 9+8 9+6 0+1 6+7 6+5 0+5 11+2 11+6 0+1 6+0 7+5
15 0+7 7+9 12+6 0+3 5+5 9+7 0+9 9+8 9+6 0+1 6+7 6+5 0+5 11+2 11+6 0+1 6+0 7+5
20 0+7 8+0 12+6 0+2 5+3 9+4 0+8 10+2 9+9 0+1 6+7 6+4 0+5 11+2 11+7 0+1 6+0 7+5
25 0+6 7+9 12+3 0+2 5+3 9+2 0+7 9+8 10+1 0+1 6+2 5+9 0+6 11+2 11+5 0+1 6+0 7+3
30 0+5 7+8 12+3 0+2 5+4 8+8 0+6 10+5 9+8 0+1 5+7 5+5 0+5 10+6 11+4 0+1 6+4 7+2

Notes: ~i! 1,000 iterations; ~ii! ZM1~ [p0!, ZM1
d~ [p0 !, the original and modified generalized spectral tests derived under time-varying higher moments, respectively, GM1~ [p0!, the infeasible original generalized spectral

test; ~iii! Tp, the preliminary lag order used in a plug-in method to choose a data-dependent lag order [p0+ The Parzen kernel is used for ZM1~ [p0!, ZM1
d~ [p0 !, and GM1~ [p0!+
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Table 2. Empirical size of tests under ARCH~1! errors

T T � 100 T � 250 T � 500

10% 5% 10% 5% 10% 5%

Tp M1 GM1 M1
d M1 GM1 M1

d M1 GM1 M1
d M1 GM1 M1

d M1 GM1 M1
d M1 GM1 M1

d

AR~1!: Yt � 0+5Yt�1 � ztMht , ht � 0+43 � 0+57«t�1
2 , zt ; i+i+d+N~0,1!

10 2+5 6+4 8+7 1+5 3+9 5+2 6+2 8+8 9+6 3+4 5+0 6+9 8+2 9+3 9+4 4+2 6+2 5+6
15 2+3 6+3 8+7 1+8 3+7 4+9 6+2 8+8 9+6 3+4 5+0 6+9 8+2 9+3 9+4 4+2 6+2 5+6
20 2+2 6+2 8+4 1+8 3+4 4+4 6+2 8+8 9+4 3+5 4+9 6+8 8+2 9+3 9+4 4+2 6+2 5+6
25 2+0 6+1 7+8 1+8 3+2 3+9 5+6 8+4 9+2 3+2 4+4 6+2 8+3 9+4 9+5 4+3 5+7 5+5
30 1+9 6+0 7+7 2+0 3+1 4+0 5+5 7+7 8+9 3+0 4+3 5+6 8+1 8+9 9+4 4+2 5+6 5+4

AR~2!: Yt � 0+5Yt�1 � 0+25Yt�2 � ztMht , ht � 0+43 � 0+57«t�1
2 , zt ; i+i+d+N~0,1!

10 2+5 6+4 8+7 1+5 3+9 7+0 5+4 8+8 9+6 3+5 5+0 6+7 7+5 9+3 9+4 3+6 6+2 6+0
15 2+3 6+3 8+7 1+4 3+7 7+0 5+4 8+8 9+6 3+5 5+0 6+7 7+5 9+3 9+4 3+6 6+2 6+0
20 2+2 6+2 8+4 1+4 3+4 6+5 5+3 8+8 9+4 3+5 4+9 6+6 7+5 9+3 9+4 3+6 6+2 6+0
25 2+0 6+1 7+8 1+3 3+2 6+2 4+9 8+4 9+2 2+9 4+4 6+4 7+5 9+4 9+5 3+7 5+7 6+1
30 1+9 6+0 7+7 1+1 3+1 7+5 4+5 7+7 8+9 2+6 4+3 6+1 7+5 8+9 9+4 4+1 5+6 6+0

AR~3!: Yt � (j�1
3 0+5 jYt�j � ztMht , ht � 0+43 � 0+57«t�1

2 , zt ; i+i+d+N~0,1!
10 2+7 6+4 12+9 1+4 3+9 8+3 5+8 8+8 10+8 3+3 5+0 7+2 7+0 9+3 9+3 4+1 6+2 6+8
15 2+5 6+3 12+5 1+4 3+7 8+2 5+8 8+8 10+8 3+3 5+0 7+2 7+0 9+3 9+3 4+1 6+2 6+8
20 2+4 6+2 12+0 1+2 3+4 7+5 5+9 8+8 10+4 3+3 4+9 7+2 7+1 9+3 9+3 4+1 6+2 6+8
25 1+9 6+1 12+1 1+2 3+2 7+6 5+4 8+4 10+4 2+9 4+4 7+0 7+1 9+4 9+5 4+0 5+7 6+5
30 1+8 6+0 11+8 1+0 3+1 7+1 5+4 7+7 10+4 2+7 4+3 6+7 7+1 8+9 9+5 3+9 5+6 6+0

AR~4!: Yt � (j�1
4 0+5 jYt�j � ztMht , ht � 0+43 � 0+57«t�1

2 , zt ; i+i+d+N~0,1!
10 2+0 6+4 13+7 1+0 3+9 8+8 4+7 8+8 11+2 2+9 5+0 6+7 6+8 9+3 11+0 5+0 6+2 6+9
15 2+0 6+3 13+6 1+0 3+7 8+7 4+7 8+8 11+2 2+9 5+0 6+7 6+8 9+3 11+0 5+0 6+2 6+9
20 2+0 6+2 13+7 1+5 3+4 8+5 4+5 8+8 11+3 2+7 4+9 6+7 6+9 9+3 11+0 5+0 6+2 6+9
25 1+8 6+1 12+7 0+9 3+2 7+9 4+2 8+4 11+4 2+2 4+4 7+0 6+7 9+4 11+1 5+0 5+7 6+7
30 1+7 6+0 12+3 0+8 3+1 8+1 4+1 7+7 11+0 2+0 4+3 7+0 6+4 8+9 10+9 4+4 5+6 6+6

Notes: ~i! 1,000 iterations; ~ii! ZM1~ [p0!, ZM1
d~ [p0 !, the original and modified generalized spectral tests derived under time-varying higher moments, respectively, GM1~ [p0!, the infeasible original generalized spectral

test; ~iii! Tp, the preliminary lag order used in a plug-in method to choose a data-dependent lag order [p0+ The Parzen kernel is used for ZM1~ [p0!, ZM1
d~ [p0 !, and GM1~ [p0!+
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more similarly to the infeasible test GM1~ [p0! than ZM1~ [p0! when T � 100,
and when T � 250, ZM1

d~ [p0 ! and GM1~ [p0! perform more or less similarly+ These
results indicate the relative robustness of the modified test ZM1

d~ [p0 ! to param-
eter estimation uncertainty, illustrating the merits of applying the Wooldridge
~1990a! device to the generalized spectral tests+

Next, we turn to the power of the tests ZM1~ p! and ZM1
d~ p!+ Table 3 reports the

empirical rejection rates of the tests at the 5% significance level under DGPs
P+1–P+8 using asymptotic and empirical critical values, respectively+ For the power
using asymptotic critical values, ZM1

d~ [p0 ! is more powerful than or equally
powerful to ZM1~ [p0! under all scenarios, which is not surprising at all given the
fact that ZM1~ [p0! tends to underreject under H0+ Under DGPs P+1 ~bilinear~1!!,
P+2 ~NMA~1!!, P+4 ~SETAR~1!! and P+8 ~SIGN AR~6!!, ZM1~ [p0! has substan-
tially lower power than ZM1

d~ [p0 ! when T � 100, although its power increases as
the sample size T increases and catches up with that of ZM1

d~ [p0 ! when T � 250+
This is consistent with the substantial underrejection of ZM1~ [p0! due to the impact
of parameter estimation uncertainty+ Under DGPs P+2 ~NMA~1!!, P+3 ~EXP-
AR~1!!, P+6 ~ARMA~1,1!!, P+7 ~NMA~5!!, and P+8 ~SIGN AR~6!!, both ZM1~ [p0!
and ZM1

d~ [p0 ! have unit power except for one scenario when T � 250+
We now compare the powers of the tests using empirical critical values, which

provide fair comparison of different tests on an equal ground+ The empirical
critical values are obtained under AR~1!-i.i.d. Under DGP P+1 ~bilinear~1!!,
ZM1

d~ [p0 ! is a bit more powerful than ZM1~ [p0! when T � 100+ They have equal or
similar power when T � 250+ The power of ZM1

d~ [p0 ! is relatively more robust
to the choice of the preliminary lag order Tp than that of ZM1~ [p0!+ Under DGP
P+2 ~NMA~1!!, ZM1

d~ [p0 ! and ZM1~ [p0! have roughly equal power+ The power of
ZM1~ [p0! and ZM1

d~ [p0 ! is rather robust to the choice of the preliminary lag order
Tp when T � 250+

Under DGP P+3 ~EXP-AR~1!!, ZM1
d~ [p0 ! is slightly less powerful than ZM1~ [p0!

when T � 100+ When T � 250, ZM1~ [p0! and ZM1
d~ [p0 ! have the same unit power+

Also, the power of both tests is robust to the choice of preliminary lag order Tp+
Under DGP P+4 ~SETAR~1!!, ZM1

d~ [p0 ! and ZM1~ [p0! also have roughly equal
powers for each sample size T+

Under DGP P+5 ~STAR~1!!, ZM1
d~ [p0 ! is less powerful than ZM1~ [p0!, particu-

larly when T � 100, but the power of ZM1
d~ [p0 ! increases rapidly as T increases+

Under DGP P+6 ~ARMA~1,1!!, the power of ZM1
d~ [p0 ! is slightly smaller than

that of ZM1~ [p0!, and it quickly increases as T increases+When T � 250, ZM1
d~ [p0 !

and ZM1~ [p0! are equally powerful, and their powers are close to unity+
Under DGP P+7 ~NMA~5!!, ZM1

d~ [p0 ! is slightly less powerful than ZM1~ [p0!
when T � 100, but its power quickly catches up with that of ZM1~ [p0! when T �
250+When T � 250, both tests have unit power+ Under DGP P+8 ~SIGN AR~6!!,
both ZM1~ [p0! and ZM1

d~ [p0 ! are equally powerful for both sample sizes, and they
have unit power when T � 250+

We note that there exist substantial or significant differences between the
power of ZM1~ [p0! using the asymptotic critical value and the power of ZM1~ [p0!

134 YONGMIAO HONG AND YOON-JIN LEE



Table 3. Empirical powers of tests

T T � 100 T � 250 T � 100 T � 250

ACV ECV ACV ECV ACV ECV ACV ECV

Tp M1 M1
d M1 M1

d M1 M1
d M1 M1

d M1 M1
d M1 M1

d M1 M1
d M1 M1

d

DGP P+1: Bilinear~1! DGP P+2: NMA~1!
10 25+4 49+2 42+6 46+4 57+8 72+8 71+6 71+8 45+2 69+2 66+4 65+4 98+0 98+4 99+2 98+4
15 24+6 48+0 41+0 44+8 57+8 72+8 71+6 71+8 44+0 68+2 64+8 65+0 98+0 98+4 99+2 98+4
20 22+6 45+6 39+0 45+2 57+2 72+8 71+8 71+6 41+0 65+4 63+0 64+8 97+6 98+4 99+0 98+4
25 21+4 44+0 35+8 45+2 54+4 71+4 67+6 70+4 38+0 59+6 58+6 61+8 97+0 98+2 99+0 98+2
30 20+8 42+4 32+6 43+0 52+0 70+0 64+6 69+6 35+6 55+4 57+0 56+0 96+2 98+2 99+0 98+2

DGP P+3: EXP-AR~1! DGP P+4: SETAR~1!
10 89+6 90+4 94+0 90+0 100+0 100+0 100+0 100+0 31+4 51+0 48+0 47+8 81+8 91+8 89+8 90+4
15 89+6 90+2 93+6 90+0 100+0 100+0 100+0 100+0 30+4 50+2 47+2 47+0 81+8 91+8 89+8 90+4
20 89+2 90+2 93+4 90+2 100+0 100+0 100+0 100+0 25+8 45+4 44+0 44+8 80+8 90+8 89+6 90+2
25 88+6 89+0 93+0 90+2 100+0 100+0 100+0 100+0 24+2 41+8 41+8 42+4 78+4 90+0 88+2 89+6
30 88+2 89+0 91+8 89+0 100+0 100+0 100+0 100+0 22+2 38+8 38+8 40+0 75+6 88+2 87+0 87+4

DGP P+5: STAR~1! DGP P+6: ARMA~1,1!
10 35+8 37+8 53+6 35+2 87+2 88+6 93+6 87+2 67+6 79+8 81+2 77+4 99+2 99+8 99+8 99+8
15 35+2 37+4 52+6 34+6 87+2 88+6 93+6 87+2 67+8 79+0 80+0 76+6 99+2 99+8 99+8 99+8
20 35+4 36+4 51+2 36+0 87+0 88+8 93+6 87+2 67+4 76+6 78+4 76+4 99+2 99+6 99+8 99+6
25 34+2 35+0 47+6 36+0 86+4 86+8 93+2 86+4 64+8 74+6 76+2 75+4 99+2 99+6 99+4 99+6
30 32+4 33+4 46+6 33+6 85+0 86+4 92+8 85+8 62+8 73+6 74+4 73+8 99+0 99+4 99+4 99+4

DGP P+7: NMA~5! DGP P+8: SIGN AR~6!
10 82+2 89+6 92+2 88+4 100+0 100+0 100+0 100+0 25+0 42+2 38+8 40+0 83+0 95+2 92+6 94+6
15 82+2 89+4 91+0 87+6 100+0 100+0 100+0 100+0 41+6 58+0 55+4 55+6 99+8 100+0 99+8 99+8
20 80+4 87+0 89+4 87+0 100+0 100+0 100+0 100+0 56+6 73+6 72+0 73+2 100+0 100+0 100+0 100+0
25 76+6 85+0 87+4 86+0 100+0 100+0 100+0 100+0 70+2 84+0 84+8 73+2 100+0 100+0 100+0 100+0
30 74+0 83+4 86+0 83+8 100+0 100+0 100+0 100+0 81+4 90+8 91+2 91+0 100+0 100+0 100+0 100+0

Notes: ~i! 500 iterations, 5% significance level; ~ii! ACV, the asymptotic critical value; ECV, the empirical critical value; ~iii! ZM1~ [p0 !, ZM1
d~ [p0 !, the original and modified generalized spectral tests, respectively;

~iv! Tp, the preliminary lag order used in a plug-in method to choose a data-dependent lag order [p0+ The Parzen kernel is used for both ZM1~ [p0! and ZM1
d~ [p0 !; ~v! DGP P+1, Yt � 0+5Yt�1 � 0+6Yt�1«t�1 � «t ; DGP P+2,

Yt � 0+5Yt�1 � 0+6et�1
2 � «t ; DGP P+3, Yt � 0+5Yt�1 � 10Yt�1 exp~�Yt�1

2 !� «t ; DGP P+4, Yt � 0+5Yt�11~Yt�1 � 0!� 0+5Yt�11~Yt�1 � 0!� «t ; DGP P+5, Yt � 1 � 0+5Yt�1 � ~�4 � 0+4Yt�1!G~2Yt�1!� «t , where
G~z! � @1 � exp~�z!#�1 ; DGP P+6, Yt � 0+5Yt�1 � 0+5«t�1 � «t ; DGP P+7, Yt � 0+5Yt�1 � (j�1

5 0+5 j«t�j
2 � «t ; DGP P+8,Yt � 1~Yt�6 � 0! � 1~Yt�6 � 0! � «t , where «t ; i+i+d+N~0,1!+
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using the empirical critical value+ In particular, the power of ZM1~ [p0! using
asymptotic critical value is lower than that of ZM1~ [p0! using empirical critical
value+ In contrast, the power of ZM1

d~ [p0 ! using asymptotic critical value is sim-
ilar to that of ZM1

d~ [p0 ! using empirical critical value in all cases+
In summary, we have observed the following stylized facts+

• The empirical sizes of the original ZM1~ [p0! test are substantially lower than
the nominal significance levels, because of the impact of parameter esti-
mation uncertainty+ The underrejection is more severe under homoskedas-
tic errors and with more estimated autoregressive parameters+ On the other
hand, the Wooldridge ~1990a! device can effectively reduce the impact
of parameter estimation uncertainty; the empirical sizes of the modified
ZM1

d~ [p0 ! test are reasonable in most cases, especially when the sample size
becomes moderately large+ Its sizes are slightly larger than the correspond-
ing significance levels when the preliminary lag order Tp is small, but they
improve as both the preliminary lag order Tp and the sample size T increase+

• As the lag order d of the AR~d ! model increases, i+e+, the number of esti-
mated autoregressive parameters increases, ZM1~ [p0! shows more severe
underrejections+ In contrast, ZM1

d~ [p0 ! is relatively robust to parameter esti-
mation uncertainty and the number of estimated autoregressive parameters
in most cases+

• For the power using asymptotic critical values, ZM1
d~ [p0 ! is always more

powerful than ZM1~ [p0!, and the power of ZM1
d~ [p0 ! is more robust to the

choice of the preliminary lag order Tp than that of ZM1~ [p0! in many cases+
• When using empirical critical values, the ZM1

d~ [p0 ! test is not always as
powerful as the ZM1~ [p0! test, but it has similar power to ZM1~ [p0! in most
cases, particularly when the sample size is moderately large+ There is not
much power loss for the modified test, although its size has been signifi-
cantly improved+ Both tests have omnibus power against all eight DGPs
provided the sample size is sufficiently large+ They require no knowledge
of the lag structure of the potential alternative+

• There exist some substantial differences between the power of ZM1~ [p0! using
the asymptotic critical value and the power of ZM1~ [p0! using the empirical
critical value+ In particular, the power of ZM1~ [p0! using asymptotic critical
values is always lower than the power of ZM1~ [p0! using empirical critical
values, sometime rather substantially+ In contrast, the powers of ZM1

d~ [p0 !
using asymptotic and empirical critical values are more or less similar+

6. CONCLUSION

Adapting the Wooldridge ~1990a! device to a generalized spectral derivative
approach, we propose an improved version of a class of residual-based, gener-
ally applicable specification tests for linear and nonlinear conditional mean mod-
els in time series, where the dimension of the conditioning information set may
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be infinite+ Like the original generalized spectral derivative tests, the modified
tests can detect a wide range of model misspecification in mean while being
robust to conditional heteroskedasticity and time-varying higher order moments
of unknown form+ They check a large number of lags but naturally discount
higher order lags, which alleviates the power loss due to the loss of a large
number of degrees of freedom+ The most appealing feature of the modified tests
is that their finite-sample distribution is relatively robust to parameter estima-
tion uncertainty and this is achieved without suffering from significant power
loss, as is confirmed in our simulation+ These results indicate that the proposed
modified tests can be a useful tool in the specification analysis for time series
conditional mean models+

NOTES

1+ We conjecture that our modified generalized spectral derivative tests are also applicable to
threshold autoregressive models with unknown thresholds, but our regularity conditions given in
Section 3 rule out this class of models+

2+ A potentially useful application is the investigation of possible nonlinear business cycles by
f ~v,u, v!+ It has been well known that business cycles exhibit asymmetric features, typically with
longer expansions and short recessions ~e+g+, Hamilton, 1989; Diebold and Rudebusch, 1990!+ The
power spectrum, when applied to macroeconomic time series such as the U+S+ GDP growth rates,
often produces a flat spectrum+ However, some nonlinear time series experts ~e+g+, Tong, 1990,
p+ 232! believe that business cycles are related to nonlinear cyclical dynamics+ It will be interesting
to examine whether f ~v,u, v! can capture and identify such nonlinear business cycles+

3+ The generalized spectrum f ~v,u, v! is suitable for testing the i+i+d+ hypothesis for $«t % as is
considered in Hong and Lee ~2003!+ It is not suitable for testing H0, because $«t % can be an m+d+s+
but not an i+i+d+ sequence+

4+ See Bierens ~1982! and Stinchcombe and White ~1998! for discussion in a different context
with i+i+d+ samples+

5+ The use of E~«t 6«t�j ! or sj
~1,0!~0, v! for testing H0 is analogous in spirit to the nonparamet-

ric additive models in the nonparametric estimation literature ~e+g+, Kim and Linton, 2004!+
6+ We note that the hypothesis of E~«t 6It�1

« ! � 0 a.s. is not the same as the hypothesis of
E~«t 6«t�j ! � 0 a+s+ for all j � 0+ The former implies the latter but not vice versa+ This is the price
we have to pay for dealing with the difficulty of the curse of dimensionality+ One example that is
not an m+d+s+ but has E~«t 6«t�j ! � 0 a.s. for all j � 0 is a nonlinear moving-average process «t �
azt�2 zt�3 � zt , $zt % ; i+i+d+~0,s 2!+

7+ For example, consider an MA~1! model: Yt � u0«t�1 � «t �(j�1
`

�~�u0!
jYt�j � «t + Here,

the infeasible information set It�1 � $Yt�1,Yt�2, + + + ,Y1,Y0, + + +% contains the entire past history $Ys, s � t %
dating back to the infinite past+ On the other hand, It�1

† � $Yt�1,Yt�2, + + + ,Y1, S«0%, where S«0 is an
assumed initial value for «0+

8+ Hong and Lee ~2005! also considered two other classes of generalized spectral tests, derived
under conditional homoskedasticity and i+i+d+ regression errors, respectively+ These tests can also
be modified in the same way as we do for ZM1~ p! to remove the impact of parameter estimation
uncertainty+

9+ As one referee points out, the asymptotic N~0,1! distribution of GM1~ p! or GM1
d~ p! can be

viewed as the normal approximation for a chi-square distribution with the degree of freedom growing
to infinity+ Because the chi-square distribution is skewed to the right, the normal approximation
may be not accurate unless the degree of freedom is sufficiently large+ To improve the finite-
sample performance of GM1~ p! or GM1

d~ p!, one may consider ~e+g+! the Chen and Deo ~2004! power
transformation, which can alleviate the skewness problem+We leave this possibility to future work+
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10+ We are grateful to a referee for suggesting this alternative approach+
11+ We impose b � 3 to simplify the proof of Theorem 1+ In other words, the condition of

b � 3 is sufficient but may not be necessary for ZM1
d~ p! to be asymptotically N~0,1! under H0+

12+ Alternatively, one could use the OLS estimator Zbj~v!� ~(t�j�1
T ZGt ZGt

'!�1(t�j�1
T ZGt Zct�j ~v!

for 0 � j � T+ The asymptotic N~0,1! distribution of ZM1
d~ p! remains unchanged, but the for-

mal proof is more tedious+
13+ We do not include exogenous variables as regressors, which is common in practice, because

the inclusion of exogenous variables will not have much adverse impact on the size even for the
ZM1~ p! test+ This is because the estimated parameters corresponding to exogenous variables do not

have significant impact on the distribution of the ZM1~ p! test+ In contrast, the lagged dependent
variables have significant impact on the size of the original test M1~ p!, on which we focus in this
simulation study+

14+ We also consider a generalized autoregressive conditionally heteroskedastic ~GARCH! pro-
cess with an infinite unconditional fourth-order moment+ The size performance of the generalized
spectral derivative tests is similar+

15+ For the Bartlett kernel, the range of the means of [p0 is wider, from 6+3 to 17+5 when
T � 100, from 6+4 to 17+8 for T � 250, and from 6+6 to 18+0 when T � 500+ This is apparently due
to different bandwidth rules: for the Bartlett kernel, [p0 � [cBT 103, and for the Parzen kernel, [p0 �
[cPT 105+ Nevertheless, the sizes of the tests using the Bartlett kernel are similar to the sizes of the

tests using the Parzen kernel+ These results are available from the authors upon request+
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MATHEMATICAL APPENDIX

Throughout the Appendix, we let C � ~1,`! denote a generic bounded constant+

Proof of Theorem 1. We shall show that ZM1
d~ p! � ZM1~ p!

p
&& 0+ The asymptotic

normality of ZM1
d~ p! then follows immediately from Hong and Lee ~2005, Thm+ 1! under
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Assumptions A+1–A+8+ Noting that «t~u! [ Yt � g~It�1,u! in ~2+1!, where It is the un-
observable information set from period t to the infinite past, we write

[«t [ Yt � g~It�1
† , Zu!� «t ~ Zu!� g~It�1, Zu!� g~It�1

† , Zu!+

Because It�1
† � It�1 generally, we have [«t � «t~ Zu!, but Assumption A+3 implies

(
t�1

T

@ [«t � «t ~ Zu!# 2 � (
t�1

T

@g~It�1, Zu!� g~It�1
† , Zu!# 2 � OP~1!+ (A.1)

By the mean value theorem, we have «t~ Zu!� «t � Gt~ Nu!'~ Zu� u0! for some Nu between Zu
and u0, where Gt~u! [ ~]0]u!g~It�1,u!+ It follows from the Cauchy–Schwarz inequality
and Assumptions A+2 and A+4 that

(
t�1

T

@«t ~ Zu!� «t #
2 � T 7 Zu� u072T �1(

t�1

T

sup
u�Q0

7Gt ~u!72 � OP~1!, (A.2)

where Q0 is a neighborhood containing u0, the p lim~ Zu!+ Both ~A+1! and ~A+2! imply

(
t�1

T

~ [«t � «t !
2 � OP~1!+ (A.3)

Throughout, we put Tj [ T � 6 j 6+ To show that ZM1
d~ p! � ZM1~ p!

p
&& 0, it suffices to

show ~i!

p�102� (
j�1

T�1

k 2~ j0p!Tj @6 [gj
~1,0!~0, v!62 � 6 [sj

~1,0!~0, v!62 # dW~v!
p
&& 0, (A.4)

~ii! p�102 @ ZC1
d~ p! � ZC1~ p!# � OP~T �102!, and ~iii! p�1 @ ZD1

d~ p! � ZD1~ p!#
p
&& 0, where

ZD1~ p! @ p as shown in Hong and Lee ~2005, proof of Thm+ 1!+ For reasons of space, we
focus on the proof of ~A+4!; the proofs for ~ii! and ~iii! are straightforward+ Note that we
need to obtain the convergence rate OP~T �102! for p�102 @ ZC1

d~ p!� ZC1~ p!# to ensure that
replacing ZC1

d~ p! with ZC1~ p! has asymptotically negligible impact given p0T r 0+
To show ~A+4!, we decompose

� (
j�1

T�1

k 2~ j0p!Tj @6 [gj
~1,0!~0, v!62 � 6 [sj

~1,0!~0, v!62 # dW~v! � ZA1 � 2 Re~ ZA2 !, (A.5)

where

ZA1 �� (
j�1

T�1

k 2~ j0p!Tj 6 [gj
~1,0!~0, v!� [sj

~1,0!~0, v!62 dW~v!,

ZA2 �� (
j�1

T�1

k 2~ j0p!Tj @ [gj
~1,0!~0, v!� [sj

~1,0!~0, v!# [sj
~1,0!~0, v!* dW~v!,

where Re~ ZA2! is the real part of ZA2 and [sj
~1,0!~0, v!* is the complex conjugate of

[sj
~1,0!~0, v!+ Then ~A+4! follows from Theorems A+1 and A+2, which are given sub-

sequently, and p r ` as T r `+
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THEOREM A+1+ Under the conditions of Theorem 1, ZA1 � OP~1! , and p�102 ZA1
p
&& 0.

THEOREM A+2+ Under the conditions of Theorem 1, p�102 ZA2
p
&& 0.

Proof of Theorem A.1. By the definitions of [gj
~1,0!~0, v! and [sj

~1,0!~0, v!, we have for
j � 0,

[gj
~1,0!~0, v!� [sj

~1,0!~0, v! � iTj
�1 (

t�j�1

T

[«t @ Zht�j ~v!� Zct�j ~v!#� �i Zbj ~v!'Tj
�1 (

t�j�1

T

ZGt [«t ,

(A.6)

where Zht�j~v! [ Zct�j~v! � ZGt
' Zbj ~v!, Zbj~v! [ ~(t�1

T ZGt ZGt
'!�1(t�j�1

T ZGt Zct�j ~v!, ZGt [

~]0]u!g~It�1
† , Zu!, Zct�j~v! [ e iv [«t�j � [wj~v!, and [wj~v! � T �1(t�j�1

T e iv [«t�j + Noting that
7 Zbj~v!72 � lmin

�2 ~T �1(t�1
T ZGt ZGt

'!7T �1(t�j�1
T ZGt Zct�j ~v!72 , where lmin~T

�1(t�1
T ZGt ZGt

'!

denotes the minimum eigenvalue of T �1(t�1
T ZGt ZGt

' , we have

ZA1 � lmin
�2 �T �1(

t�1

T

ZGt ZGt
'�

� � (
j�1

T�1

k 2~ j0p!Tj��T �1 (
t�j�1

T

ZGt Zct�j ~v!��
2

��Tj
�1 (

t�j�1

T

ZGt [«t��
2

dW~v!+ (A.7)

We first show that lmin~T
�1(t�1

T ZGt ZGt
'! � c � 0 with probability approaching 1+

Given that ZGt � Gt � ZGt � Gt~ Zu!� Gt~ Zu!� Gt , where Gt [Gt~u0!� ~]0]u!g~It�1,u0!,
we have

��T �1(
t�1

T

ZGt ZGt
'� T �1(

t�1

T

Gt Gt
'�� � T �1(

t�1

T

7 ZGt � Gt72 � 2T �1(
t�1

T

7 ZGt � Gt77Gt7

� OP~T
�102 !, (A.8)

where T �1(t�1
T 7 ZGt � Gt72 � 2T �1(t�1

T 7 ZGt � Gt~ Zu!72 � 2T �1(t�1
T 7Gt ~ Zu!� Gt72 �

OP~T �1! given Assumptions A+2–A+4 and the mean value theorem for the expansion of
Gt~ Zu! � Gt +

On the other hand, given Assumption A+5, $Gt Gt
'% is a strictly stationary mixing pro-

cess with mixing coefficient a~ j !+ By a standard a-mixing inequality, and Assumption
A+2, we have

��T �1(
t�1

T

Gt Gt
'� E~Gt Gt

'!��
2

� CT �1 (
j��`

`

a~ j !~n�1!0n � CT �1+ (A.9)

It follows from ~A+8! and ~A+9! that T �1(t�1
T ZGt ZGt

' p
&& E~Gt Gt

'!, and so
lmin~T

�1(t�1
T ZGt ZGt

'!
p
&& lmin~EGt Gt

'! � c � 0 given nonsingularity of E~Gt Gt
'! in

Assumption A+2+ Thus, to bound the order of magnitude for ZA1, we can focus on the
term
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� (
j�1

T�1

k 2~ j0p!Tj��T �1 (
t�j�1

T

ZGt Zct�j ~v!��
2

��Tj
�1 (

t�j�1

T

ZGt [«t��
2

dW~v!

� 2��T �1(
t�1

T

ZGt [«t��
2� (

j�1

T�1

k 2~ j0p!Tj��Tj
�1 (

t�j�1

T

ZGt Zct�j ~v!��
2

dW~v!

� 2� (
j�1

T�1

k 2~ j0p!Tj��T �1 (
t�j�1

T

ZGt Zct�j ~v!��
2

��Tj
�1(

t�1

j

ZGt [«t��
2

dW~v!

[ 2 ZB1 � 2 ZB2 ,

where we have used the identity that (t�j�1
T ZGt [«t � ~(t�1

T � (t�1
j ! ZGt [«t + Theo-

rem A+1 follows from Propositions A+1 and A+2, which are given subsequently,
~T �1(t�1

T ZGt ZGt
'!�1 � OP~1!, and p r ` as T r `+

PROPOSITION A+1+ ZB1 � OP~1! and p�102 ZB1
p
&& 0.

PROPOSITION A+2+ ZB2 � OP~ p20T ! and p�102 ZB2
p
&& 0.

Proof of Proposition A.1. Noting that [«t � «t � [«t � «t ~ Zu! � «t ~ Zu! � «t and
ZGt � Gt � ZGt � Gt~ Zu! � Gt~ Zu! � Gt , we decompose

T �1(
t�1

T

ZGt [«t � T �1(
t�1

T

@ ZGt � Gt ~ Zu!# @ [«t � «t ~ Zu!#� T �1(
t�1

T

@ ZGt � Gt ~ Zu!# @«t ~ Zu!� «t #

� T �1(
t�1

T

@ ZGt � Gt ~ Zu!#«t � T �1(
t�1

T

Gt ~ Zu!@ [«t � «t ~ Zu!#

� T �1(
t�1

T

Gt ~ Zu!@«t ~ Zu!� «t #� T �1(
t�1

T

@Gt ~ Zu!� Gt #«t � T �1(
t�1

T

Gt «t

� OP~T
�1 � T �1 � T �102 � T �102 � T �102 � T �102 � T �102 !

� OP~T
�102 !, (A.10)

given Assumptions A+2–A+4, the Cauchy–Schwarz inequality, the mean value theorem,
and Markov’s inequality or Chebyshev’s inequality+ The mean value theorem is used for
the second, fifth, and sixth terms in ~A+10!, and Chebyshev’s inequality is used for the
last term in ~A+10!, where $Gt«t % is an m+d+s+ under H0+

Next we decompose

Tj
�1 (

t�j�1

T

ZGt Zct�j ~v! � Tj
�1 (

t�j�1

T

@ ZGt � Gt ~ Zu!# Zct�j ~v!� Tj
�1 (

t�j�1

T

@Gt ~ Zu!� Gt # Zct�j ~v!

� Tj
�1 (

t�j�1

T

Gt @ Zct�j ~v!� ct�j ~v!#

� Tj
�1 (

t�j�1

T

@Gtct�j ~v!� hj ~v!#� hj ~v!

[ (
d�1

5

ZHdj ~v!, say, (A.11)
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where hj~v! [ E @Gtct�j~v!# + For the first term in ~A+11!, given 6 Zct�j~v!6 � 2, we have
6 ZH1j~v!6 � 2Tj

�1(t�1
T supu�Q0

7~]0]u!g~It�1
† ,u! � ~]0]u!g~It�1,u!7+ It follows from

Assumptions A+3, A+6, and A+7, and Markov’s inequality that

� (
j�1

T�1

k 2~ j0p!Tj 6 ZH1j ~v!62 dW~v!

� 4�dW~v!�(
t�1

T

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!���2

(
j�1

T�1

k 2~ j0p!Tj
�1

� OP~ p0T !, (A.12)

where (j�1
T�1 k 2~ j0p!Tj

�1 � O~ p0T ! as is shown in Hong ~1999, ~A+15!!+
For the second term in ~A+11!, ZH2j~v!, using the mean value theorem and the fact

that 6 Zct�j~v!6 � 2, we have 6 ZH2j~v!6 � 27 Zu � u07Tj
�1(t�j�1

T supu�Q0
��~]20]u]u ' !

g~It�1,u! �� + It follows that

� (
j�1

T�1

k 2~ j0p!Tj 6 ZH2j ~v!62 dW~v!

� 47 Zu� u072�dW~v! (
j�1

T�1

k 2~ j0p!Tj�Tj
�1(

t�1

T

sup
u�Q0

�� ]2

]u]u '
g~It�1,u!���2

� OP~ p!, (A.13)

given Assumptions A+2, A+4, A+6, and A+7, Minkowski’s inequality, and Markov’s
inequality+

For the third term ZH3j~v!, we write

ZH3j ~v! � Tj
�1 (

t�j�1

T

Gt ~e
iv [«t�j � e iv«t�j !� �Tj

�1 (
t�j�1

T

Gt� @ [wj ~v!� w~v!#

[ ZH31j ~v!� ZH32j ~v!+

For the term ZH31j~v!, using the identity that 6e iz1 � e iz2 6 � 6z1 � z26 for any real-valued
z1 and z2, we have 7 ZH31j~v!7 � 6v6Tj

�1(t�j�1
T 7Gt7 6 [«t�j � «t�j 6+ It follows from the

Cauchy–Schwarz inequality and ~A+3! that

� (
j�1

T�1

k 2~ j0p!Tj7 ZH31j ~v!72 dW~v!

� �v 2 dW~v!�(
t�1

T

~ [«t � «t !
2�� (

j�1

T�1

k 2~ j0p!Tj
�1 (

t�j�1

T

7Gt72�
� OP~ p!+ (A.14)
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For the term ZH32j~v!, we first decompose

6 [wj ~v!� w~v!6 � �Tj
�1 (

t�j�1

T

~e iv [«t�j � e iv«t�j !�� �Tj
�1 (

t�j�1

T

ct�j ~v!�
� 6v6Tj

�1 (
t�j�1

T

6 [«t�j � «t�j 6� �Tj
�1 (

t�j�1

T

ct�j ~v!�+
It follows from the Cauchy–Schwarz inequality and Markov’s inequality that

� (
j�1

T�1

k 2~ j0p!Tj7 ZH32j ~v!72 dW~v!

� 2�v 2 dW~v!�(
t�1

T

~ [«t � «t !
2� (

j�1

T�1

k 2~ j0p!��Tj
�1 (

t�j�1

T

Gt��
2

� 2 (
j�1

T�1

k 2~ j0p!Tj��Tj
�1 (

t�j�1

T

Gt��
2� �Tj

�1 (
t�j�1

T

ct�j ~v!�
2

dW~v!

� OP~ p!� OP~ p!� OP~ p!, (A.15)

where we used the facts that E7Tj
�1(t�j�1

T Gt72 � @Tj
�1(t�j�1

T ~E7Gt72 !102 # 2 and
E6Tj

�1( t�j�1
T ct�j~v!62 � CTj

�1, where the latter follows from Assumption A+5 and a
standard mixing inequality+

We now consider the fourth term in ~A+11!, ZH4j~v!+ Put EGt[Gt � EGt +We decompose

ZH4j ~v! � E~Gt !�Tj
�1 (

t�j�1

T

ct�j ~v!���Tj
�1 (

t�j�1

T

EGtct�j ~v!� hj ~v!� +
By Assumption A+5 and a standard mixing inequality, we have E6Tj

�1(t�j�1
T

ct�j ~v!62 � CTj
�1 and E7Tj

�1(t�j�1
T @ EGtct�j ~v! � hj~v!#72 � CTj

�1 ~see Hong, 1999,
~A+7! and related proof !+ It follows that

� (
j�1

T�1

k 2~ j0p!Tj7 ZH4j ~v!72 dW~v!

� 27E~Gt !72 (
j�1

T�1

k 2~ j0p!Tj� �Tj
�1 (

t�j�1

T

ct�j ~v!�
2

dW~v!

� 2 (
j�1

T�1

k 2~ j0p!Tj� ��Tj
�1 (

t�j�1

T

EGtct�j ~v!� hj ~v!��
2

dW~v!

� OP~ p!� OP~ p!� OP~ p!+ (A.16)

Finally, for the last term in ~A+11!, we have

� (
j�1

T�1

k 2~ j0p!Tj7 ZH5j ~v!72 dW~v! � T(
j�1

` �7hj ~v!72 dW~v!� O~T !, (A.17)
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where we have made use of the facts that (j��`
` supv�R7hj ~v!7 � C(j��`

`

a~ j !~n�1!0n � ` given Assumption A+5, and 6k~{!6 � 1 from Assumption A+6+
Collecting ~A+10!–~A+17!, we obtain

��T �1(
t�1

T

ZGt [«t��
2� (

j�1

T�1

k 2~ j0p!Tj��Tj
�1 (

t�j�1

T

ZGt Zct�j ~v!��
2

dW~v!

� OP~T
�1 !OP~ p0T � p � p � T !� OP~1!+ �

Proof of Proposition A.2. We first write

ZB2 � �� (
j�1

T�1

6k~ j0p!6Tj��T �1 (
t�j�1

T

ZGt Zct�j ~v!��
2

dW~v!�
�� (

j�1

T�1

6k~ j0p!6��Tj
�1(

t�1

j

ZGt [«t��
2� + (A.18)

For the term in the first bracket in ~A+18!, we can obtain

� (
j�1

T�1

6k~ j0p!6Tj��T �1 (
t�j�1

T

ZGt Zct�j ~v!��
2

dW~v! � OP~T !, (A.19)

by analogous reasoning to ~A+11!–~A+17!+ Note that the difference of having the factor
6k~{!6 rather than the factor k 2~{! does not change the order of magnitude for the term
in ~A+19!+

Next we consider the term in the second bracket in ~A+18!+As in ~A+10!, we decompose

Tj
�1(

t�1

j

ZGt [«t � Tj
�1(

t�1

j

@ ZGt � Gt ~ Zu!# @ [«t � «t ~ Zu!#� Tj
�1(

t�1

j

@ ZGt � Gt ~ Zu!# @«t ~ Zu!� «t #

� Tj
�1(

t�1

j

@ ZGt � Gt ~ Zu!#«t � Tj
�1(

t�1

j

Gt ~ Zu!@ [«t � «t ~ Zu!#

� Tj
�1(

t�1

j

Gt ~ Zu!@«t ~ Zu!� «t #� Tj
�1(

t�1

j

@Gt ~ Zu!� Gt #«t � Tj
�1(

t�1

j

Gt «t

[ (
d�1

7

ZCdj , say+ (A.20)

For the first term ZC1j in ~A+20!, we have

6 ZC1j 6 � Tj
�1�(

t�1

T

sup
u�Q0

�g~It�1
† ,u!� g~It�1,u! �2�102

��(
t�1

T

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!��

2�102

,
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by the Cauchy–Schwarz inequality+ It follows that

(
j�1

T�1

6k~ j0p!6 6 ZC1j 62

� �(
t�1

T

sup
u�Q0

6g~It�1
† ,u!� g~It�1,u!62�

��(
t�1

T

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!��

2� (
j�1

T�1

6k~ j0p!6Tj
�2

� OP~ p0T 2 !, (A.21)

where (j�1
T�1 6k~ j0p!6Tj

�2 � O~ p0T 2!, following analogous reasoning to ~A+15! of Hong
~1999!+

Next, we consider ZC2j + By the mean value theorem and the Cauchy–Schwarz inequal-
ity, we have

6 ZC2j 6 � 7 Zu� u07Tj
�1(

t�1

j

7 ZGt � Gt ~ Zu!77Gt ~ Nu!7

� 7 Zu� u07�Tj
�1(

t�1

j

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!��

2�102

��Tj
�1(

t�1

j

sup
u�Q0

�� ]]u g~It�1,u!��
2�102

+

It follows that

(
j�1

T�1

6k~ j0p!6 6 ZC2j 62

� 7 Zu� u072�(
t�1

T

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!��

2�
�� (

j�1

T�1

6k~ j0p!6Tj
�2(

t�1

j

sup
u�Q0

�� ]]u g~It�1,u!��
2�

� OP~T
�1 !OP~1!OP~ p

20T 2 !� OP~ p
20T 3 !, (A.22)

given Assumptions A+2–A+4 and A+6, where the term in the second bracket is OP~ p20T 2!
by Markov’s inequality and the fact that

(
j�1

T�1

6k~ j0p!6Tj
�2(

t�1

j

E sup
u�Q0

�� ]]u g~It�1,u!��
2

� Cp2�p�1 (
j�1

T�1

~ j0p!6k~ j0p!6Tj
�2�� O~ p20T 2 !,

where p�1(j�1
T�1~ j0p!6k~ j0p!6Tj

�2 r T �2*0
` z 6k~z!6 dz as p r ` and T r `+
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Next, for the ZC3j term in ~A+20!, by the Cauchy–Schwarz inequality, we have

7 ZC3j7 � �Tj
�1(

t�1

T

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!��

2�102�Tj
�1(

t�1

j

«t
2�102

+

It follows from Assumptions A+2, A+3, A+5, and A+6 and Markov’s inequality that

(
j�1

T�1

6k~ j0p!6 7 ZC3j72 � �(
t�1

T

sup
u�Q0

�� ]]u g~It�1
† ,u!�

]

]u
g~It�1,u!��

2�
�� (

j�1

T�1

6k~ j0p!6Tj
�2(

t�1

j

«t
2�

� OP~1!OP~ p
20T 2 !� OP~ p

20T 2 !+ (A.23)

Similarly, following analogous reasoning to ZC3j , we can obtain

(
j�1

T�1

6k~ j0p!6 7 ZC4j72 � �(
t�1

T

sup
u�Q0

@g~It�1
† ,u!� g~It�1,u!# 2	

� (
j�1

T�1

6k~ j0p!6Tj
�2(

t�1

j

sup
u�Q0

�� ]]u g~It�1,u!��
2

� OP~ p
20T 2 !+ (A.24)

Next, using the mean value theorem for «t~ Zu! � «t and Gt~ Zu! � Gt , respectively, we
can obtain

(
j�1

T�1

6k~ j0p!6 7 ZC5j72 � 7 Zu� u072 (
j�1

T�1

6k~ j0p!6�Tj
�1(

t�1

j

sup
u�Q0

�� ]2

]u]u '
g~It�1,u!��

2�2

� OP~ p
30T 3 ! (A.25)

and

(
j�1

T�1

6k~ j0p!6 7 ZC6j72 � 7 Zu� u072 (
j�1

T�1

6k~ j0p!6

��Tj
�1(

t�1

j

sup
u�Q0

�� ]]u g~It�1,u!��
2��Tj

�1(
t�1

j

«t
2�

� OP~ p
30T 3 !, (A.26)

given Assumptions A+2 and A+4–A+6, where we have made use of the fact that
p�1(j�1

T�1~ j0p!2 6k~ j0p!6Tj
�2 � O~T �2! given Assumption A+6+

Finally, for the ZC7j term in ~A+20!, by Markov’s inequality and the fact that
E7Tj

�1(t�1
j Gt «t72 � ~ j0Tj

2!~E7Gt74 !102 @E~«t
4!#102 given the m+d+s+ property of $«t %

under H0, we have
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(
j�1

T�1

6k~ j0p!6 7 ZC7j72 � (
j�1

T�1

6k~ j0p!6��Tj
�1(

t�1

j

Gt «t��
2

� OP~ p
20T 2 !+ (A.27)

Collecting ~A+20!–~A+27! and p0T r 0, we obtain

(
j�1

T�1

6k~ j0p!6��Tj
�1(

t�1

j

ZGt [«t��
2

� OP~ p
20T 2 !+ (A.28)

It follows from ~A+18!, ~A+19!, and ~A+28! that ZB2 � OP~T !OP~ p20T 2!� oP~ p102!, given
p30T 2 r 0+ This completes the proof of Theorem A+1+ �

Proof of Theorem A.2. Given ~A+6!, we can write

�@ [gj
~1,0!~0, v!� [sj

~1,0!~0, v!# [sj
~1,0!~0, v!*

� i Zbj ~v!'�Tj
�1(

t�1

T

ZGt [«t� [sj
~1,0!~0, v!* � i Zbj ~v!'�Tj

�1(
t�1

j

ZGt [«t� [sj
~1,0!~0, v!*

[ i ZB1j ~v!� i ZB2j ~v!+ (A.29)

First we consider the term ZB1j~v! in ~A+29!+ Recalling that Zbj~v! � ~(t�1
T ZGt ZGt

'!�1

(t�j�1
T ZGt Zct�j ~v!, we have

� (
j�1

T�1

k 2~ j0p!Tj ZB1j ~v! dW~v!

� �T �1(
t�1

T

ZGt [«t��T �1(
t�1

T

ZGt ZGt
'��1

� � (
j�1

T�1

k 2~ j0p!Tj�Tj
�1 (

t�j�1

T

ZGt Zct�j ~v!� [sj
~1,0!~0, v!* dW~v!+

As shown in the proof of Theorem A+1, we have ~T �1(t�1
T ZGt ZGt

'!�1 � OP~1! and
T �1(t�1

T ZGt [«t � OP~T �102! in ~A+10!+ Therefore, we only need to bound the order of
magnitude for the term

� (
j�1

T�1

k 2~ j0p!Tj�Tj
�1 (

t�j�1

T

ZGt Zct�j ~v!� [sj
~1,0!~0, v!* dW~v!+

Using ~A+11!, we can decompose

� (
j�1

T�1

k 2~ j0p!Tj�Tj
�1 (

t�j�1

T

ZGt Zct�j ~v!� [sj
~1,0!~0, v!* dW~v!

� (
d�1

5 � (
j�1

T�1

k 2~ j0p!Tj ZHdj ~v! [sj
~1,0!~0, v!* dW~v!+ (A.30)
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For the first term in ~A+30!, ZH1j~v!, we have

��(
j�1

T�1

k 2~ j0p!Tj� ZH1j ~v! [sj
~1,0!~0, v!* dW~v!��

� � (
j�1

T�1

k 2~ j0p!Tj�7 ZH1j ~v!72 dW~v!�102

�� (
j�1

T�1

k 2~ j0p!Tj�6 [sj
~1,0!~0, v!62 dW~v!�102

� OP~ p
1020T 102 !OP~ p

102 !� OP~ p0T 102 !, (A.31)

by the Cauchy–Schwarz inequality, ~A+12!, and the fact that

(
j�1

T�1

k 2~ j0p!Tj�6 [sj
~1,0!~0, v!62 dW~v! � OP~ p! (A.32)

under H0, as implied by Hong and Lee ~2005, Thm+ 1!+
Similarly, for the second to fourth terms ZH2j~v!, ZH3j~v!, and ZH4j~v!, by the Cauchy–

Schwarz inequality and ~A+13!–~A+16!, we have for d � 2,3,4,

��� (
j�1

T�1

k 2~ j0p!Tj ZHdj ~v! [sj
~1,0!~0, v!* dW~v!��

� � (
j�1

T�1

k 2~ j0p!Tj�7 ZHdj ~v!72 dW~v!�102

�� (
j�1

T�1

k 2~ j0p!Tj�6 [sj
~1,0!~0, v!62 dW~v!�102

� OP~ p
102 !OP~ p

102 !� OP~ p!+ (A.33)

Finally, we consider the last term ZH5j~v!+ Recalling that ZH5j~v! � hj~v!, and using the
triangle inequality, we have

��� (
j�1

T�1

k 2~ j0p!Tj ZH5j ~v! [sj
~1,0!~0, v!* dW~v!��

� ��� (
j�1

T�1

k 2~ j0p!Tjhj ~v! Isj
~1,0!~0, v!* dW~v!��

� ��� (
j�1

T�1

k 2~ j0p!Tjhj ~v!@ [sj
~1,0!~0, v!* � Isj

~1,0!~0, v!* # dW~v!��
� OP~T

102 !� OP~T
102 !OP~1!� OP~T

102 !, (A.34)

where the first term is OP~T 102 ! by Markov’s inequality, Minkowski’s inequality,
(j��`
` supv�R7hj ~v!7 � `, 6k~{!6 � 1, and supv�R E6 Isj

~1,0!~0, v!62 � CTj
�1 under

H0; the second term is also OP~T 102 ! by the Cauchy–Schwarz inequality,
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(j��`
` supv�R7hj ~v!7 � `, 6k~{!6 � 1, and (j�1

T�1 k 2~ j0p!Tj *6 [sj
~1,0!~0, v!� Isj

~1,0!~0, v!62

dW~v! � OP~1! as is shown in Hong and Lee ~2005, Prop+ A+1!+
Combining ~A+30!–~A+34!, ~T �1(t�1

T ZGt ZGt !
�1 � OP~1!, and T �1(t�1

T ZGt [«t �
OP~T �102!, we obtain

� (
j�1

T�1

k 2~ j0p!Tj ZB1j ~v! dW~v! � OP~T
�102 !OP~1!OP~T

102 !� OP~1!+ (A.35)

It remains to consider the term ZB2j~v! in ~A+29!+ By the Cauchy–Schwarz inequality
and ZB2 � OP~ p20T ! from Proposition A+2, we have

��� (
j�1

T�1

k 2~ j0p!Tj ZB2j ~v! dW~v!��

� lmin
�1 �T �1(

t�1

T

ZGt ZGt
'�~ ZB2 !

102� (
j�1

T�1

k 2~ j0p!Tj 6 [sj
~1,0!~0, v!62 dW~v!�102

� OP~1!OP~ p0T 102 !OP~ p
102 !� OP~ p

3020T 102 !+ (A.36)

The desired result of Theorem A+2 then follows from ~A+29!, ~A+35!, ~A+36!, and
p20T r 0+ �

Proof of Theorem 2. Recall that ht�j~v! � ct�j~v! � Gt
'bj ~v!, where ct�j~v! �

e iv«t�j � w~v!, Gt � ~]0]u!g~It�1,u0!, and bj~v! � @E~Gt Gt
'!#�1E @Gtct�j ~v!# + We

define the following pseudo test statistic:

RM1
d~ p! � � (

j�1

T�1

k 2~ j0p!Tj�6 Tgj
~1,0!~0, v!62 dW~v!� OC1

d~ p!��M PD1
d~ p!,

where Tgj
~1,0!~0, v! � Tj

�1(t�j�1
T i«t ht�j ~v!,

OC1
d~ p! � (

j�1

T�1

k 2~ j0p!�Tj
�1 (

t�j�1

T

«t
2 6ht�j ~v!62 dW~v!,

PD1
d~ p! � (

j�1

T�2

(
l�1

T�2

k 2~ j0p!k 2~l0p!

� �� � 1

T � max~ j, l ! (
t�max~ j, l !�1

T

«t
2 ht�j ~v!ht�l ~v!�

2

dW~u! dW~v!+

The proof of Theorem 2 consists of the proofs of Theorems A+3 and A+4, which follow,
where Theorem A+3 shows that replacing the estimated residuals $ [«t %t�1

T with the unob-
servable sample $«t %t�1

T and replacing the OLS estimators $ Zbj ~v!%j�1
T�1 with their popula-

tion counterparts do not affect the asymptotic behavior of ~ p1020T ! ZM1
d~ p! under HA+

Theorem A+4 shows that ~ p1020T ! RM1
d~ p! converges to a well-defined probability limit

under HA from which the ZM1
d~ p! test gains its power+

THEOREM A+3+ Under the conditions of Theorem 2, ~ p1020T !@ ZM1
d~ p!� RM1

d~ p!#
p
&& 0.
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THEOREM A+4+ Under the conditions of Theorem 2,

~ p1020T ! RM1
d~ p!

p
&& �2Dd�

0

`

k 2~z! dz��102

�p��
�p

p

6S ~0,1,0! ~v,0, v!� S0
~0,1,0!~v,0, v!62 dvdW~v!+

Proof of Theorem A.3. It suffices to show that ~i!

T �1� (
j�1

T�1

k 2~ j0p!Tj @6 [gj
~1,0!~0, v!62 � 6 Tgj

~1,0!~0, v!62 # dW~v!
p
&& 0; (A.37)

~ii! p�1 @ ZC1
d~ p!� OC1

d~ p!#� OP~1!; ~iii! p�1 @ ZD1
d~ p!� PD1

d~ p!#
p
&& 0; and ~iv! PD1

d~ p! @ p+
Here we focus on the proof of ~i!+ The proofs of ~ii! and ~iii! are straightforward, and
the result ~iv! that PD1

d~ p! @ p can be shown in a similar way to the proof of the ED1~ p!
term in Hong and Lee ~2005, proof of Thm+ 1!+

To show ~A+37!, we decompose

� (
j�1

T�1

k 2~ j0p!Tj @6 [gj
~1,0!~0, v!62 � 6 Tgj

~1,0!~0, v!62 # dW~v! � ZA3 � 2 Re~ ZA4 !, (A.38)

where

ZA3 �� (
j�1

T�1

k 2~ j0p!Tj 6 [gj
~1,0!~0, v!� Tgj

~1,0!~0, v!62 dW~v!,

ZA4 �� (
j�1

T�1

k 2~ j0p!Tj @ [gj
~1,0!~0, v!� Tgj

~1,0!~0, v!# Tgj
~1,0!~0, v!* dW~v!+

From the Cauchy–Schwarz inequality and the fact that T �1*(j�1
T�1 k 2~ j0p!Tj 6 Tgj

~1,0!

~0, v!62 dW~v! � OP~1! under HA as is implied by Theorem A+4 ~the proof of Theo-
rem A+4 does not depend on Theorem A+3! and (j�1

T�1 k 2~ j0p!Tj
�1 � O~ p0T !, it suffices

to show that T �1 ZA3
p
&& 0+

By straightforward algebra, we have j � 0,

[gj
~1,0!~0, v!� Tgj

~1,0!~0, v!

� iTj
�1 (

t�j�1

T

@ [«t Zht�j ~v!� «t ht�j ~v!#

� iTj
�1 (

t�j�1

T

~ [«t � «t ! Zht�j ~v!� iTj
�1 (

t�j�1

T

«t @ Zht�j ~v!� ht�j ~v!#

� iTj
�1 (

t�j�1

T

~ [«t � «t ! Zht�j ~v!� iTj
�1 (

t�j�1

T

«t @e
iv [«t�j � e iv«t�j #

� @ [wj ~v!� w~v!#Tj
�1 (

t�j�1

T

i«t

� iTj
�1 (

t�j�1

T

«t ~ ZGt � Gt !
' Zbj ~v!� �iTj

�1 (
t�j�1

T

«t Gt
'� @ Zbj ~v!� bj ~v!#

[ i @ ZB1j ~v!� ZB2j ~v!� ZB3j ~v!� ZB4j ~v!� ZB5j ~v!# + (A.39)
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For the first term in ~A+39!, by the Cauchy–Schwarz inequality, we have

6 ZB1j ~v!62 � �Tj
�1(

t�1

T

~ [«t � «t !
2��Tj

�1 (
t�j�1

T

6 Zht�j ~v!62�� 4Tj
�1(

t�1

T

~ [«t � «t !
2,

where Tj
�1(t�j�1

T 6 Zht�j ~v!62 � Tj
�1(t�j�1

T 6 Zct�j ~v!62 given the fact that Zht�j~v! is the
OLS estimated residual of regressing Zct�j~v! on ZGt + It follows from ~A+3! and
(j�1

T�1 k 2~ j0p! � OP~ p! that

T �1� (
j�1

T�1

k 2~ j0p!Tj 6 ZB1j ~v!62 dW~v!

� �dW~v!�(
t�1

T

~ [«t � «t !
2�T �1 (

j�1

T�1

k 2~ j0p!� OP~ p0T !+ (A.40)

Next, using the inequality that 6e iz1 � e iz2 6 � 6z1 � z26 for any real-valued z1

and z2, and the Cauchy–Schwarz inequality, we have 6 ZB2j~v!62 � v 2~Tj
�1(t�1

T «t
2!

Tj
�1(t�1

T ~ [«t � «t !
2 + It follows from ~A+3! and Markov’s inequality that

T �1 (
j�1

T�1

k 2~ j0p!Tj�6 ZB2j ~v!62 dW~v!

� �v 2 dW~v!�Tj
�1(

t�1

T

~ [«t � «t !
2� (

j�1

T�1

k 2~ j0p!�T �1 (
t�j�1

T

«t
2�

� OP~1!OP~1!OP~ p0T !� OP~ p0T !+ (A.41)

For the third term in ~A+39!, we have

6 ZB3j ~v!62 � 6 [wj ~v!� w~v!62�Tj
�1 (

t�j�1

T

«t�2

� 4�Tj
�1 (

t�j�1

T

«t�2

given 6 [wj~v!6 � 1 and 6w~v!6 � 1+ It follows that

T �1 (
j�1

T�1

k 2~ j0p!Tj�6 ZB3j ~v!62 dW~v!

� 4T �1 (
j�1

T�1

k 2~ j0p!Tj�Tj
�1 (

t�j�1

T

«t�2�dW~v!� OP~ p0T !, (A.42)

by Markov’s inequality and the fact that E~Tj
�1(t�j�1

T «t !
2 � CTj

�1 using Assump-
tion A+5 and a standard mixing inequality+ Note that $«t % is not an m+d+s+ under HA+

Now, we turn to the fourth term ZB4j~v! in ~A+39!+ Recalling that Zbj~v! �
~(t�1

T ZGt ZGt
'!�1(t�j�1

T ZGt Zct�j ~v! and 6 Zct�j~v!6 � 2, we have

max
1�j�T

sup
v�R

7 Zbj ~v!7 � 2lmin
�1 �T �1(

t�1

T

ZGt ZGt
'�T �1 (

t�j�1

T

7 ZGt7

�OP~1!OP~1!� OP~1!, (A.43)
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where we made use of the fact that lmin~T
�1(t�1

T ZGt ZGt
'! � c � 0 with probability

approach 1, which has been shown in the proof of Theorem A+1+ Moreover, we have

��Tj
�1 (

t�j�1

T

«t ~ ZGt � Gt !��
2

� Tj
�1(

t�1

T

7 ZGt � Gt72�Tj
�1 (

t�j�1

T

«t
2�,

where (t�1
T 7 ZGt � Gt72 � 2(t�1

T 7 ZGt � Gt~ Zu!72 � 2(t�1
T 7Gt ~ Zu! � Gt72 � OP~1!, by

Assumptions A+2–A+4 and the mean value theorem for the second term+ It follows from
Markov’s inequality that

T �1 (
j�1

T�1

k 2~ j0p!Tj *7 ZB4j ~v!72 dW~v!

� max
1�j�T

sup
v�R

7 Zbj ~v!7�dW~v!�(
t�1

T

7 ZGt � Gt72�T �1 (
j�1

T�1

k 2~ j0p!Tj
�1 (

t�j�1

T

«t
2

� OP~ p0T !+ (A.44)

Finally, we consider the last term ZB5j~v! in ~A+39!+ By the Cauchy–Schwarz inequal-
ity, we have

7 ZB5j ~v!72 � ��Tj
�1 (

t�j�1

T

Gt «t��
2

7 Zbj ~v!� bj ~v!72

� �T �1(
t�1

T

7Gt72��Tj
�1(

t�1

T

«t
2�~T0Tj !7 Zbj ~v!� bj ~v!72+

We now focus on Zbj~v!� bj~v!+ Noting that bj~v!� @E~Gt Gt
'!#�1hj ~v!, we decompose

Zbj ~v!� bj ~v! � �T �1(
t�1

T

ZGt ZGt
'��1

T �1 (
t�j�1

T

ZGt Zct�j ~v!� bj ~v!

� ��T �1(
t�1

T

ZGt ZGt
'��1

� @E~Gt Gt
'!#�1	 T �1 (

t�j�1

T

ZGt Zct�j ~v!

� @E~Gt Gt
'!#�1�T �1 (

t�j�1

T

ZGt Zct�j ~v!� hj ~v!�
[ ZL1j ~v!� ZL2j ~v!, say+ (A.45)

Using ~A+8! and ~A+9! and Chebyshev’s inequality, we have T �1(t�1
T ZGt ZGt

' �
E~Gt Gt

'! � OP~T �102!+ This implies ~T �1(t�1
T ZGt ZGt

'!�1 � @E~Gt Gt
'!#�1 � OP~T �102!

given that E~Gt Gt
'! is O~1! and nonsingular+ Moreover, given 6 Zct�j~v!6 � 2, we have

max1�j�T supv�R7T �1(t�j�1
T ZGt Zct�j ~v!7 � 2T �1(t�1

T 7 ZGt7 � OP~1!+ It follows that

max
1�j�T

sup
v�R

7 ZL1j ~v!7 � OP~T
�102 !OP~1!� OP~T

�102 !+
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Therefore, we obtain

T �1 (
j�1

T�1

k 2~ j0p!Tj�~T0Tj !7 ZL1j ~v!72 dW~v! � OP~ p0T !, (A.46)

where we used the fact that (j�1
T�1 k 2~ j0p!Tj

�1 � O~ p0T !+
Next, we consider ZL2j~v!, for which it suffices to consider T �1(t�j�1

T ZGt Zct�j ~v! �
hj~v!+ We write

T �1 (
t�j�1

T

ZGt Zct�j ~v!� hj ~v! �
Tj

T (d�1

4

ZHdj ~v!�
j

T
hj ~v!,

where the ZHdj~v! are defined as in ~A+11!+ As shown in the proof of Theorem A+1, we
have

(
d�1

4

T �1 (
j�1

T�1

k 2~ j0p!Tj�7 ZHdj ~v!72 dW~v! � OP~ p0T !+

Moreover, given 6k~{!6 � 1, we have

T �1 (
j�1

T�1

k 2~ j0p!Tj� �� j

T
hj ~v!��

2

dW~v! � T �2 (
j��`

`

j 2�7hj ~v!72 dW~v!� OP~T
�2 !,

where (j��`
` j 2 supv�R7hj ~v!72 � ` given Assumption A+5 and the standard mixing

inequality 7hj~v!7 � Ca~ j !~n�1!0n + It follows that

T �1 (
j�1

T�1

k 2~ j0p!Tj ~T0Tj !�7 ZL2j ~v!72 dW~v!

� OP~ p0T !� OP~T
�2 !� OP~ p0T !+ (A.47)

Combining ~A+45!–~A+47!, we obtain

T �1 (
j�1

T�1

k 2~ j0p!Tj�7 ZB5j ~v!72 dW~v! � OP~ p0T !+ (A.48)

Combining ~A+39!–~A+44! and ~A+48! then yields

ZA3 � T �124 (
d�1

5

(
j�1

T�1

k 2~ j0p!Tj�7 ZBdj ~v!72 dW~v!� OP~ p0T !� oP~1!,

given p0T r 0+ This completes the proof of Theorem A+3+ �

Proof of Theorem A.4. See Hong ~1999, proof of Thm+ 5! for the case of ~m, l ! �
~1,0!+ We note that following reasoning analogous to the proof of Hong and Lee ~2005,
proof of Thm+ 1!, we can obtain OC1

d~ p! � OP~ p! and p�1 PD1
d~ p!

p
&& 2Dd *0

` k 4~z! dz,
where Dd is as in Theorem 2+ �
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